論文の概要: High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models
- arxiv url: http://arxiv.org/abs/2012.13088v1
- Date: Thu, 24 Dec 2020 03:56:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 08:24:11.327443
- Title: High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models
- Title(参考訳): 木構造付加モデルによる高次元ベイズ最適化
- Authors: Eric Han, Ishank Arora, Jonathan Scarlett
- Abstract要約: 変数の重複部分集合を持つ低次元関数を合成して高次元目標関数をモデル化する一般化加法モデルを検討する。
私たちの目標は、必要な計算リソースを減らし、より高速なモデル学習を促進することです。
我々は,合成関数と実世界のデータセットに関する様々な実験を通して,本手法の有効性を実証し,議論する。
- 参考スコア(独自算出の注目度): 40.497123136157946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization (BO) has shown significant success in tackling
expensive low-dimensional black-box optimization problems. Many optimization
problems of interest are high-dimensional, and scaling BO to such settings
remains an important challenge. In this paper, we consider generalized additive
models in which low-dimensional functions with overlapping subsets of variables
are composed to model a high-dimensional target function. Our goal is to lower
the computational resources required and facilitate faster model learning by
reducing the model complexity while retaining the sample-efficiency of existing
methods. Specifically, we constrain the underlying dependency graphs to tree
structures in order to facilitate both the structure learning and optimization
of the acquisition function. For the former, we propose a hybrid graph learning
algorithm based on Gibbs sampling and mutation. In addition, we propose a novel
zooming-based algorithm that permits generalized additive models to be employed
more efficiently in the case of continuous domains. We demonstrate and discuss
the efficacy of our approach via a range of experiments on synthetic functions
and real-world datasets.
- Abstract(参考訳): ベイズ最適化(BO)は高価な低次元ブラックボックス最適化問題に取り組む上で大きな成功を収めている。
関心のある多くの最適化問題は高次元であり、そのような設定へのboのスケーリングは依然として重要な課題である。
本稿では,変数の重複部分集合を持つ低次元関数を高次元対象関数をモデル化するために構成する一般化加法モデルを考える。
我々のゴールは、既存の手法のサンプル効率を維持しつつ、モデルの複雑さを減らし、計算資源の削減とモデル学習の高速化である。
具体的には,構造学習と獲得関数の最適化の両方を容易にするため,木構造への依存グラフの制約を行う。
前者に対しては,ギブスサンプリングと突然変異に基づくハイブリッドグラフ学習アルゴリズムを提案する。
さらに,連続ドメインの場合,一般化された加法モデルをより効率的に活用することのできる,ズームに基づく新しいアルゴリズムを提案する。
我々は,合成関数と実世界のデータセットに関する実験を通じて,我々のアプローチの有効性を実証し,議論する。
関連論文リスト
- Functional Graphical Models: Structure Enables Offline Data-Driven
Optimization [121.57202302457135]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Additive Tree-Structured Conditional Parameter Spaces in Bayesian
Optimization: A Novel Covariance Function and a Fast Implementation [34.89735938765757]
木構造関数への加法仮定を一般化し, 改良された試料効率, より広い適用性, 柔軟性を示す。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
本稿では,事前学習したVGG16およびRes50モデルのプルーニングとResNet20の検索アクティベーション関数に関する最適化ベンチマーク関数について述べる。
論文 参考訳(メタデータ) (2020-10-06T16:08:58Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
木構造関数への加法的仮定を一般化する。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-21T11:21:55Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining [1.5293427903448025]
深部生成モデルから学習した低次元連続潜伏多様体の最適化を行う,効率的なブラックボックス最適化のための改良手法を提案する。
最適化軌道に沿ってクエリされたデータポイントの生成モデルを定期的に再学習し、目的関数値に応じてこれらのデータポイントを重み付けすることで、これを実現する。
この重み付けされたリトレーニングは既存の手法で容易に実装でき、合成および実世界の最適化問題において、その効率と性能を著しく向上することが実証的に示されている。
論文 参考訳(メタデータ) (2020-06-16T14:34:40Z) - Learning to Guide Random Search [111.71167792453473]
我々は、潜在低次元多様体上の高次元関数の微分自由最適化を考える。
最適化を行いながらこの多様体を学習するオンライン学習手法を開発した。
本研究では,連続最適化ベンチマークと高次元連続制御問題について実験的に評価する。
論文 参考訳(メタデータ) (2020-04-25T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。