Pain Assessment based on fNIRS using Bidirectional LSTMs
- URL: http://arxiv.org/abs/2012.13231v2
- Date: Sun, 27 Dec 2020 13:15:19 GMT
- Title: Pain Assessment based on fNIRS using Bidirectional LSTMs
- Authors: Raul Fernandez Rojas, Julio Romero, Jehu Lopez-Aparicio, Keng-Liang Ou
- Abstract summary: We propose the use of functional near-infrared spectroscopy (fNIRS) and deep learning for the assessment of human pain.
The aim of this study is to explore the use deep learning to automatically learn features from fNIRS raw data to reduce the level of subjectivity and domain knowledge required in the design of hand-crafted features.
- Score: 1.9654272166607836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing pain in patients unable to speak (also called non-verbal patients)
is extremely complicated and often is done by clinical judgement. However, this
method is not reliable since patients vital signs can fluctuate significantly
due to other underlying medical conditions. No objective diagnosis test exists
to date that can assist medical practitioners in the diagnosis of pain. In this
study we propose the use of functional near-infrared spectroscopy (fNIRS) and
deep learning for the assessment of human pain. The aim of this study is to
explore the use deep learning to automatically learn features from fNIRS raw
data to reduce the level of subjectivity and domain knowledge required in the
design of hand-crafted features. Four deep learning models were evaluated,
multilayer perceptron (MLP), forward and backward long short-term memory
net-works (LSTM), and bidirectional LSTM. The results showed that the Bi-LSTM
model achieved the highest accuracy (90.6%)and faster than the other three
models. These results advance knowledge in pain assessment using neuroimaging
as a method of diagnosis and represent a step closer to developing a
physiologically based diagnosis of human pain that will benefit vulnerable
populations who cannot self-report pain.
Related papers
- Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
This study explores the application of artificial intelligence (AI) and machine learning (ML) to improve the speed and accuracy of abdominal trauma diagnosis.
We developed an advanced AI-based model combining 3D segmentation, 2D Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) to enhance diagnostic performance.
Our model processes abdominal CT scans to provide real-time, precise assessments, thereby improving clinical decision-making and patient outcomes.
arXiv Detail & Related papers (2024-07-23T04:18:34Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Automated facial recognition system using deep learning for pain
assessment in adults with cerebral palsy [0.5242869847419834]
Existing measures, relying on direct observation by caregivers, lack sensitivity and specificity.
Ten neural networks were trained on three pain image databases.
InceptionV3 exhibited promising performance on the CP-PAIN dataset.
arXiv Detail & Related papers (2024-01-22T17:55:16Z) - Estimating the severity of dental and oral problems via sentiment
classification over clinical reports [0.8287206589886879]
Analyzing authors' sentiments in texts can be practical and useful in various fields, including medicine and dentistry.
Deep learning model based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network architecture, known as CNN-LSTM, was developed to detect severity level of patient's problem.
arXiv Detail & Related papers (2024-01-17T14:33:13Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.