NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization
- URL: http://arxiv.org/abs/2206.00906v1
- Date: Thu, 2 Jun 2022 07:57:17 GMT
- Title: NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization
- Authors: Aleksandr Nesterov, Bulat Ibragimov, Dmitriy Umerenkov, Artem
Shelmanov, Galina Zubkova and Vladimir Kokh
- Abstract summary: symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
- Score: 59.15047491202254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The symptom checking systems inquire users for their symptoms and perform a
rapid and affordable medical assessment of their condition. The basic symptom
checking systems based on Bayesian methods, decision trees, or information gain
methods are easy to train and do not require significant computational
resources. However, their drawbacks are low relevance of proposed symptoms and
insufficient quality of diagnostics. The best results on these tasks are
achieved by reinforcement learning models. Their weaknesses are the difficulty
of developing and training such systems and limited applicability to cases with
large and sparse decision spaces. We propose a new approach based on the
supervised learning of neural models with logic regularization that combines
the advantages of the different methods. Our experiments on real and synthetic
data show that the proposed approach outperforms the best existing methods in
the accuracy of diagnosis when the number of diagnoses and symptoms is large.
Related papers
- Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning [31.21351373001379]
We introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal large models for diagnosing neurological disorders.
Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches.
Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts.
arXiv Detail & Related papers (2023-12-22T10:10:50Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations [26.337392652262103]
A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
arXiv Detail & Related papers (2022-05-08T01:52:42Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical
Systems [0.8379286663107844]
This paper proposes a scalable algorithm for an automated learning of a structured diagnosis model.
It offers equal performance to comparable algorithms while giving better interpretability.
arXiv Detail & Related papers (2021-04-02T11:14:05Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.