論文の概要: An Active Learning Method for Diabetic Retinopathy Classification with
Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2012.13325v2
- Date: Sat, 26 Dec 2020 08:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 13:13:08.374559
- Title: An Active Learning Method for Diabetic Retinopathy Classification with
Uncertainty Quantification
- Title(参考訳): 不確実性定量化による糖尿病網膜症分類の能動的学習法
- Authors: Muhammad Ahtazaz Ahsan, Adnan Qayyum, Junaid Qadir and Adeel Razi
- Abstract要約: 不確実性定量のためのハイブリッドモデルと、不一致データを注釈付けするためのアクティブラーニングアプローチを提案する。
糖尿病網膜症分類の枠組みについて検討し,様々な指標で最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 3.7220380160016626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning (DL) techniques have provided state-of-the-art
performance on different medical imaging tasks. However, the availability of
good quality annotated medical data is very challenging due to involved time
constraints and the availability of expert annotators, e.g., radiologists. In
addition, DL is data-hungry and their training requires extensive computational
resources. Another problem with DL is their black-box nature and lack of
transparency on its inner working which inhibits causal understanding and
reasoning. In this paper, we jointly address these challenges by proposing a
hybrid model, which uses a Bayesian convolutional neural network (BCNN) for
uncertainty quantification, and an active learning approach for annotating the
unlabelled data. The BCNN is used as a feature descriptor and these features
are then used for training a model, in an active learning setting. We evaluate
the proposed framework for diabetic retinopathy classification problem and have
achieved state-of-the-art performance in terms of different metrics.
- Abstract(参考訳): 近年、深層学習(DL)技術は様々な医療画像のタスクに最先端のパフォーマンスを提供している。
しかし、時間的制約や専門的なアノテータ、例えば放射線技師が利用できるため、良質なアノテート医療データの入手は非常に困難である。
加えて、DLはデータハングリーであり、そのトレーニングには広範な計算資源が必要である。
DLのもう1つの問題は、そのブラックボックスの性質と、因果的理解と推論を妨げる内部動作への透明性の欠如である。
本稿では,不確実性定量化のためのベイズ畳み込みニューラルネットワーク(BCNN)を用いたハイブリッドモデルと,未ラベルデータの注釈付けのためのアクティブラーニングアプローチを提案する。
BCNNは機能記述子として使用され、これらの機能は、アクティブな学習環境でモデルのトレーニングに使用される。
糖尿病網膜症分類の枠組みについて検討し,様々な指標で最先端のパフォーマンスを達成した。
関連論文リスト
- Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
マルチモーダル表現認識のための深層学習モデルは, 制御された実験室環境において顕著な性能を示した。
これらのモデルは、トレーニングに使用されるモダリティの可用性と品質のために、荒野で苦労する。
実際には、テスト時に利用できるのはトレーニング時モダリティのサブセットのみである。
特権情報による学習により、モデルはトレーニング中にのみ利用できる追加のモダリティからデータを利用することができる。
論文 参考訳(メタデータ) (2024-01-27T19:44:15Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Learning Efficient, Explainable and Discriminative Representations for
Pulmonary Nodules Classification [2.4565395352560895]
本研究では,効率的かつ(部分的に)説明可能な分類モデルの構築を目指す。
我々は,3次元ネットワークアーキテクチャを高精度かつ高速なトレードオフで自動検索するために,ニューロンアーキテクチャサーチ(NAS)を用いる。
推論段階では、予測精度とロバスト性を改善するために、多様なニューラルネットワークのアンサンブルを用いる。
論文 参考訳(メタデータ) (2021-01-19T02:53:44Z) - Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis
and Uncertainty Quantification [0.0]
糖尿病網膜症 (Diabetes Mellitus) は糖尿病の微小血管合併症の1つである。
コナールニューラルネットワークに基づく計算モデルは、眼底画像を用いたDRの自動検出技術の現状を表す。
本稿では,DR診断と不確実性定量化のためのハイブリッドディープラーニング・ガウス法を提案する。
論文 参考訳(メタデータ) (2020-07-29T04:10:42Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
本稿では,情報的サンプルを効果的に選択するための,不確実性と分散性を考慮した新しい能動的学習手法である信頼コアセットを提案する。
2つの医用画像解析タスクの比較実験により,本手法が他の活動的学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-05T13:46:16Z) - Synergic Adversarial Label Learning for Grading Retinal Diseases via
Knowledge Distillation and Multi-task Learning [29.46896757506273]
良質な医師のアノテート画像は非常に高価であり、様々な網膜疾患に対して限られた量のデータしか利用できない。
一部の研究では、AMDとDRは出血点や吐出などの一般的な特徴を共有しているが、ほとんどの分類アルゴリズムはこれらの疾患モデルを個別に訓練するだけである。
本稿では,関連網膜疾患ラベルを意味的および特徴空間の両方で付加的な信号として活用し,協調的にモデルを訓練するSALL法を提案する。
論文 参考訳(メタデータ) (2020-03-24T01:32:04Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1次元畳み込みニューラルネットワークモデルは、短距離配列の分類のために訓練されている。
モデルは、ホールドアウトテストセット上で、高い平均精度で予測を提供する。
論文 参考訳(メタデータ) (2020-02-06T17:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。