Nonclassical oscillations in pre- and post-selected quantum walks
- URL: http://arxiv.org/abs/2012.13488v1
- Date: Fri, 25 Dec 2020 02:31:25 GMT
- Title: Nonclassical oscillations in pre- and post-selected quantum walks
- Authors: Xiaoxiao Chen, Zhe Meng, Jian Li, Jiazhi Yang, Anning Zhang, Tomasz
Kopyciuk, Pawel Kurzynski
- Abstract summary: Quantum walks are counterparts of classical random walks.
Some of their properties can be emulated with classical light.
We address it by carrying out a photonic experiment based on a pre- and post-selection paradox.
- Score: 4.083296849798933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum walks are counterparts of classical random walks. They spread faster,
which can be exploited in information processing tasks, and constitute a
versatile simulation platform for many quantum systems. Yet, some of their
properties can be emulated with classical light. This rises a question: which
aspects of the model are truly nonclassical? We address it by carrying out a
photonic experiment based on a pre- and post-selection paradox. The paradox
implies that if somebody could choose to ask, either if the particle is at
position x = 0 at even time steps, or at position x = d (d > 1) at odd time
steps, the answer would be positive, no matter the question asked. Therefore,
the particle seems to undergo long distance oscillations despite the fact that
the model allows to jump one position at a time. We translate this paradox into
a Bell-like inequality and experimentally confirm its violation up to eight
standard deviations.
Related papers
- The Hidden Ontological Variable in Quantum Harmonic Oscillators [0.0]
The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system.
One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system.
arXiv Detail & Related papers (2024-07-25T16:05:18Z) - Quantum and classical symmetries [0.0]
We suggest a somewhat non-standard view on a set of curious, paradoxical from the standpoint of simple classical physics.
We follow these analogies with the examples of relatively simple and well known models of classical physics.
This text can be considered as a mini-course addressed to higher school and undergraduate students who are interested in basics of quantum mechanics.
arXiv Detail & Related papers (2024-06-24T14:45:42Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Fall of a Particle to the Center of a Singular Potential: Classical vs.
Quantum Exact Solutions [0.0]
We inspect the quantum problem with the help of the conventional Schr"odinger's equation.
Surprisingly, the quantum and classical solutions exhibit striking similarities.
arXiv Detail & Related papers (2022-02-25T11:04:39Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Classical model of delayed-choice quantum eraser [0.0]
Wheeler's delayed-choice experiment was conceived to illustrate the paradoxical nature of wave-particle duality in quantum mechanics.
In the experiment, quantum light can exhibit either wave-like interference patterns or particle-like anti-correlations.
A variant known as the quantum eraser uses entangled light to recover the lost interference in a seemingly nonlocal and retrocausal manner.
arXiv Detail & Related papers (2021-01-09T14:47:28Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.