論文の概要: Multidimensional Uncertainty-Aware Evidential Neural Networks
- arxiv url: http://arxiv.org/abs/2012.13676v1
- Date: Sat, 26 Dec 2020 04:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 01:15:41.116401
- Title: Multidimensional Uncertainty-Aware Evidential Neural Networks
- Title(参考訳): 多次元不確実性認識ニューラルネットワーク
- Authors: Yibo Hu, Yuzhe Ou, Xujiang Zhao, Jin-Hee Cho, Feng Chen
- Abstract要約: 非可逆性(OOD)検出問題を解決するために、WGAN-ENN(WENN)と呼ばれる新しい不確実性認識NNを提案する。
我々は、Wasserstein Generative Adrial Network(WGAN)とENNを組み合わせて、あるクラスの事前知識でモデルを共同で訓練するハイブリッドアプローチを採用した。
WENNによる不確実性の推定は、OODサンプルと境界サンプルを有意に区別するのに役立つことを実証した。
- 参考スコア(独自算出の注目度): 21.716045815385268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional deep neural networks (NNs) have significantly contributed to the
state-of-the-art performance in the task of classification under various
application domains. However, NNs have not considered inherent uncertainty in
data associated with the class probabilities where misclassification under
uncertainty may easily introduce high risk in decision making in real-world
contexts (e.g., misclassification of objects in roads leads to serious
accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight
uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly
model the uncertainty of class probabilities and use them for classification
tasks. An ENN offers the formulation of the predictions of NNs as subjective
opinions and learns the function by collecting an amount of evidence that can
form the subjective opinions by a deterministic NN from data. However, the ENN
is trained as a black box without explicitly considering inherent uncertainty
in data with their different root causes, such as vacuity (i.e., uncertainty
due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting
evidence). By considering the multidimensional uncertainty, we proposed a novel
uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an
out-of-distribution (OOD) detection problem. We took a hybrid approach that
combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly
train a model with prior knowledge of a certain class, which has high vacuity
for OOD samples. Via extensive empirical experiments based on both synthetic
and real-world datasets, we demonstrated that the estimation of uncertainty by
WENN can significantly help distinguish OOD samples from boundary samples. WENN
outperformed in OOD detection when compared with other competitive
counterparts.
- Abstract(参考訳): 従来のディープニューラルネットワーク(NN)は、さまざまなアプリケーションドメインの分類タスクにおける最先端のパフォーマンスに大きく貢献している。
しかし、NNは、不確実性の下での誤分類が現実世界の文脈で意思決定のリスクを高くする(例えば、道路における物体の誤分類が深刻な事故を引き起こす)クラス確率に関連するデータに固有の不確実性は考慮していない。
重みの不確実性を通じて間接的に不確実性を推定するベイズNNとは異なり、顕在的NN(ENN)は近年、クラス確率の不確かさを明示的にモデル化し、分類タスクに使用するために提案されている。
ENNは、NNの予測を主観的意見として定式化し、データから決定論的NNによって主観的意見を形成することができる量の証拠を収集して機能を学ぶ。
しかし、ENNは、空白(証拠の欠如による不確実性)や不協和(証拠の矛盾による不確実性)など、異なる根本原因を持つデータに固有の不確かさを明示的に考慮することなく、ブラックボックスとして訓練されている。
多次元不確かさを考慮し, オフ・オブ・ディストリビューション(OOD)検出問題の解法として, WGAN-ENN (WENN) と呼ばれる新しい不確実性検出NNを提案する。
We take a hybrid approach which with Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly training a model with a prior knowledge of a class, which has high vacuity for OOD sample。
人工と実世界の両方のデータセットに基づく広範な実験実験により、WENNによる不確実性の推定は、OODサンプルと境界サンプルの区別に大きく役立つことを示した。
WENNは、他の競合相手と比較してOOD検出に優れていた。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
NLP分野における不確実性関連作業の総合的なレビューを行う。
まず、自然言語の不確実性の原因を、入力、システム、出力の3つのタイプに分類する。
我々は,NLPにおける不確実性推定の課題について論じ,今後の方向性について論じる。
論文 参考訳(メタデータ) (2023-06-05T06:46:53Z) - Single-model uncertainty quantification in neural network potentials
does not consistently outperform model ensembles [0.7499722271664145]
ニューラルネットワーク(NN)は、遠く離れた地点であっても、予測に高い信頼性を割り当てることが多い。
不確かさ定量化(英: Uncertainty Quantification、UQ)は、物質系における原子間ポテンシャルのモデル化に使用されるときの課題である。
異なるUQ技術は、新しい情報データを見つけ、堅牢なポテンシャルのためにアクティブな学習ループを駆動することができる。
論文 参考訳(メタデータ) (2023-05-02T19:41:17Z) - Uncertainty Propagation in Node Classification [9.03984964980373]
本稿では,ノード分類作業におけるグラフニューラルネットワーク(GNN)の不確実性の測定に焦点をあてる。
ベイジアンモデリングフレームワークにGNNを組み込んだベイジアン不確実性伝播(BUP)法を提案する。
本稿では,GNNが学習過程における予測的不確実性を明確に統合できるようにするノード分類における不確実性指向の損失について述べる。
論文 参考訳(メタデータ) (2023-04-03T12:18:23Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Evaluating Point-Prediction Uncertainties in Neural Networks for Drug
Discovery [0.26385121748044166]
ニューラルネットワーク(NN)モデルは、薬物発見プロセスをスピードアップし、失敗率を低下させる可能性がある。
NNモデルの成功には不確実な定量化(UQ)が必要である。
本稿では,薬物発見を目的としたNNモデルの予測不確かさを推定するUQ手法について検討する。
論文 参考訳(メタデータ) (2022-10-31T03:45:11Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Uncertainty-Aware Reliable Text Classification [21.517852608625127]
ディープニューラルネットワークは、分類タスクの予測精度の成功に大きく貢献している。
ドメインシフトやアウト・オブ・ディストリビューション(out-of-distribution)の例が存在する現実の環境では、過度に信頼された予測を行う傾向があります。
補助外乱と擬似外乱サンプルを併用して, あるクラスの事前知識でモデルを訓練する, 安価なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-15T04:39:55Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Uncertainty Aware Semi-Supervised Learning on Graph Data [18.695343563823798]
ノード分類予測のためのグラフニューラルネットワーク(GNN)を用いたマルチソース不確実性フレームワークを提案する。
トレーニングノードのラベルからエビデンスを収集することにより、ノードレベルのディリクレ分布を正確に予測するグラフベースのカーネルディリクレ分布推定(GKDE)法が設計されている。
その結果,不協和性検出は誤分類検出において最良であり,空洞性検出はOOD検出において最良であることがわかった。
論文 参考訳(メタデータ) (2020-10-24T04:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。