論文の概要: Federated Unlearning
- arxiv url: http://arxiv.org/abs/2012.13891v2
- Date: Sun, 21 Feb 2021 10:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 20:08:13.679324
- Title: Federated Unlearning
- Title(参考訳): フェデレーション・アンラーニング
- Authors: Gaoyang Liu, Yang Yang, Xiaoqiang Ma, Chen Wang, Jiangchuan Liu
- Abstract要約: Federated Learning(FL)は、有望な分散機械学習(ML)パラダイムとして登場した。
忘れられる権利」とデータ中毒攻撃に対抗するための実用的なニーズは、訓練されたFLモデルから特定のトレーニングデータを削除または解読できる効率的な技術を必要とします。
FedEraser は、フェデレーション クライアントのデータがグローバル FL モデルに与える影響を排除することができる最初のフェデレーション未学習方法論です。
- 参考スコア(独自算出の注目度): 24.60965999954735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has recently emerged as a promising distributed
machine learning (ML) paradigm. Practical needs of the "right to be forgotten"
and countering data poisoning attacks call for efficient techniques that can
remove, or unlearn, specific training data from the trained FL model. Existing
unlearning techniques in the context of ML, however, are no longer in effect
for FL, mainly due to the inherent distinction in the way how FL and ML learn
from data. Therefore, how to enable efficient data removal from FL models
remains largely under-explored. In this paper, we take the first step to fill
this gap by presenting FedEraser, the first federated unlearning methodology
that can eliminate the influence of a federated client's data on the global FL
model while significantly reducing the time used for constructing the unlearned
FL model.The basic idea of FedEraser is to trade the central server's storage
for unlearned model's construction time, where FedEraser reconstructs the
unlearned model by leveraging the historical parameter updates of federated
clients that have been retained at the central server during the training
process of FL. A novel calibration method is further developed to calibrate the
retained updates, which are further used to promptly construct the unlearned
model, yielding a significant speed-up to the reconstruction of the unlearned
model while maintaining the model efficacy. Experiments on four realistic
datasets demonstrate the effectiveness of FedEraser, with an expected speed-up
of $4\times$ compared with retraining from the scratch. We envision our work as
an early step in FL towards compliance with legal and ethical criteria in a
fair and transparent manner.
- Abstract(参考訳): Federated Learning (FL)は先頃、有望な分散機械学習(ML)パラダイムとして登場した。
忘れられる権利"の実践的なニーズとデータ中毒に対する攻撃は、訓練されたFLモデルから特定のトレーニングデータを取り除いたり、未学習にしたりできる効率的なテクニックを要求する。
しかし、MLの文脈における既存の未学習技術は、FLとMLがデータからどのように学習するかという固有の区別のために、FLにはもはや効果がない。
したがって、FLモデルから効率的にデータを除去する方法はほとんど探索されていない。
In this paper, we take the first step to fill this gap by presenting FedEraser, the first federated unlearning methodology that can eliminate the influence of a federated client's data on the global FL model while significantly reducing the time used for constructing the unlearned FL model.The basic idea of FedEraser is to trade the central server's storage for unlearned model's construction time, where FedEraser reconstructs the unlearned model by leveraging the historical parameter updates of federated clients that have been retained at the central server during the training process of FL.
モデル有効性を維持しつつ、未学習モデルの再構築に著しいスピードアップをもたらすため、未学習モデルの迅速な構築に使用される新しいキャリブレーション法も開発されている。
現実的な4つのデータセットの実験では、FedEraserの有効性が示されており、スクラッチからの再トレーニングと比較すると、期待速度は4\times$である。
我々は、FLの早期段階として、公正かつ透明な方法で、法的および倫理的基準に準拠することを期待している。
関連論文リスト
- FedQUIT: On-Device Federated Unlearning via a Quasi-Competent Virtual Teacher [4.291269657919828]
フェデレートラーニング(FL)は、機械学習モデルが協調的にトレーニングされた場合、個人のデータに対するより良いプライバシー保証を約束する。
FL参加者がその参加するFLフレームワークから離脱する権利を行使する場合、FLソリューションはすべての必要なステップを実行するべきである。
本稿では,FedQUITを提案する。FedQUITは知識蒸留を用いて,FLグローバルモデルからの忘れたデータの寄与を探索する新しいアルゴリズムである。
論文 参考訳(メタデータ) (2024-08-14T14:36:28Z) - Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resilience [26.647028483763137]
我々は、Fast-FedULを紹介した。Fast-FedULは、フェデレートラーニング(FL)のための調整済みの未学習手法である。
訓練されたモデルからターゲットクライアントの影響を体系的に除去するアルゴリズムを開発した。
実験結果から、Fast-FedULはターゲットクライアントのほとんどすべてのトレースを効果的に削除し、未ターゲットクライアントの知識を維持していることがわかった。
論文 参考訳(メタデータ) (2024-05-28T10:51:38Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
我々は,連合学習のための事前学習を体系的に研究する。
事前学習はFLを改善するだけでなく,その精度のギャップを集中学習に埋めることもできる。
本論文は,FLに対する事前学習の効果を解明する試みとしてまとめる。
論文 参考訳(メタデータ) (2022-06-23T06:02:33Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Critical Learning Periods in Federated Learning [11.138980572551066]
フェデレートラーニング(FL)は、機械学習(ML)モデルを分散データでトレーニングする一般的なテクニックである。
FLの最終試験精度は,トレーニングプロセスの初期段階に大きく影響していることがわかった。
論文 参考訳(メタデータ) (2021-09-12T21:06:07Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning(FL)は、分散モデルトレーニングを可能にするフレームワークである。
既存の手法は、内部表現を無視したモデルを集約する。
我々は、分散データ上で学習した表現のマージンを用いてクライアントの偏差を計算するFedProtoを紹介する。
論文 参考訳(メタデータ) (2021-05-19T08:29:12Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
フェデレートラーニング(Federated Learning、FL)は、集中型モデルの分散ラーニングのためのフレームワークである。
我々は,共通局所勾配勾配勾配(SGD)FLアルゴリズムを強化するコンバージェント OTA FL (COTAF) アルゴリズムを開発した。
我々は,COTAFにより誘導されるプリコーディングが,OTA FLを用いて訓練されたモデルの収束率と精度を顕著に向上させることを示す。
論文 参考訳(メタデータ) (2020-09-27T08:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。