Improving Opinion Spam Detection by Cumulative Relative Frequency
Distribution
- URL: http://arxiv.org/abs/2012.13905v1
- Date: Sun, 27 Dec 2020 10:23:44 GMT
- Title: Improving Opinion Spam Detection by Cumulative Relative Frequency
Distribution
- Authors: Michela Fazzolari and Francesco Buccafurri and Gianluca Lax and
Marinella Petrocchi
- Abstract summary: Various approaches have been proposed for detecting opinion spam in online reviews.
We re-engineered a set of effective features used for classifying opinion spam.
We show that the use of the distributional features is able to improve the performances of classifiers.
- Score: 0.9176056742068814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last years, online reviews became very important since they can
influence the purchase decision of consumers and the reputation of businesses,
therefore, the practice of writing fake reviews can have severe consequences on
customers and service providers. Various approaches have been proposed for
detecting opinion spam in online reviews, especially based on supervised
classifiers. In this contribution, we start from a set of effective features
used for classifying opinion spam and we re-engineered them, by considering the
Cumulative Relative Frequency Distribution of each feature. By an experimental
evaluation carried out on real data from Yelp.com, we show that the use of the
distributional features is able to improve the performances of classifiers.
Related papers
- Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - Analytical and Empirical Study of Herding Effects in Recommendation Systems [72.6693986712978]
We study how to manage product ratings via rating aggregation rules and shortlisted representative reviews.
We show that proper recency aware rating aggregation rules can improve the speed of convergence in Amazon and TripAdvisor.
arXiv Detail & Related papers (2024-08-20T14:29:23Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
Fine-grained feedback captures nuanced distinctions in image quality and prompt-alignment.
We show that demonstrating its superiority to coarse-grained feedback is not automatic.
We identify key challenges in eliciting and utilizing fine-grained feedback.
arXiv Detail & Related papers (2024-06-24T17:19:34Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
arXiv Detail & Related papers (2024-05-09T05:45:18Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Exploiting Correlated Auxiliary Feedback in Parameterized Bandits [56.84649080789685]
We study a novel variant of the parameterized bandits problem in which the learner can observe additional auxiliary feedback that is correlated with the observed reward.
The auxiliary feedback is readily available in many real-life applications, e.g., an online platform that wants to recommend the best-rated services to its users can observe the user's rating of service (rewards) and collect additional information like service delivery time (auxiliary feedback)
arXiv Detail & Related papers (2023-11-05T17:27:06Z) - Unmasking Falsehoods in Reviews: An Exploration of NLP Techniques [0.0]
This research paper proposes a machine learning model to identify deceptive reviews.
To accomplish this, an n-gram model and max features are developed to effectively identify deceptive content.
The experimental results reveal that the passive aggressive classifier stands out among the various algorithms.
arXiv Detail & Related papers (2023-07-20T06:35:43Z) - On the Role of Reviewer Expertise in Temporal Review Helpfulness
Prediction [5.381004207943597]
Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted.
We introduce a dataset and develop a model that integrates the reviewer's expertise, derived from the past review history, and the temporal dynamics of the reviews to automatically assess review helpfulness.
arXiv Detail & Related papers (2023-02-22T23:41:22Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - User and Item-aware Estimation of Review Helpfulness [4.640835690336653]
We investigate the role of deviations in the properties of reviews as helpfulness determinants.
We propose a novel helpfulness estimation model that extends previous ones.
Our model is thus an effective tool to select relevant user feedback for decision-making.
arXiv Detail & Related papers (2020-11-20T15:35:56Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
We investigate a growing body of work that seeks to improve recommender systems through the use of review text.
Our initial findings reveal several discrepancies in reported results, partly due to copying results across papers despite changes in experimental settings or data pre-processing.
Further investigation calls for discussion on a much larger problem about the "importance" of user reviews for recommendation.
arXiv Detail & Related papers (2020-05-25T16:30:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.