Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives
- URL: http://arxiv.org/abs/2405.05562v2
- Date: Sat, 11 May 2024 18:25:29 GMT
- Title: Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives
- Authors: Emrul Hasan, Mizanur Rahman, Chen Ding, Jimmy Xiangji Huang, Shaina Raza,
- Abstract summary: Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
- Score: 11.835903510784735
- License:
- Abstract: Recommender systems play a pivotal role in helping users navigate an overwhelming selection of products and services. On online platforms, users have the opportunity to share feedback in various modes, including numerical ratings, textual reviews, and likes/dislikes. Traditional recommendation systems rely on users explicit ratings or implicit interactions (e.g. likes, clicks, shares, saves) to learn user preferences and item characteristics. Beyond these numerical ratings, textual reviews provide insights into users fine-grained preferences and item features. Analyzing these reviews is crucial for enhancing the performance and interpretability of personalized recommendation results. In recent years, review-based recommender systems have emerged as a significant sub-field in this domain. In this paper, we provide a comprehensive overview of the developments in review-based recommender systems over recent years, highlighting the importance of reviews in recommender systems, as well as the challenges associated with extracting features from reviews and integrating them into ratings. Specifically, we present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations. Finally, we propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
Related papers
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
Recommender systems utilize users' historical data to infer customer interests and provide personalized recommendations.
Collaborative filtering is one family of recommendation algorithms that uses ratings from multiple users to predict missing ratings.
Recommender systems can be more complex and incorporate auxiliary data such as content-based attributes, user interactions, and contextual information.
arXiv Detail & Related papers (2024-11-04T06:31:52Z) - The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems [0.0]
This paper introduces a method for collecting user beliefs about unexperienced items - a critical predictor of choice behavior.
We implement this method on the MovieLens platform, resulting in a rich dataset that combines user ratings, beliefs, and observed recommendations.
arXiv Detail & Related papers (2024-05-17T19:06:06Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
This survey is based on more than 100 papers from top-tier conferences like IJCAI, AAAI, TheWebConf, Recsys, UMAP, and IUI.
arXiv Detail & Related papers (2022-02-14T02:58:55Z) - A Comprehensive Overview of Recommender System and Sentiment Analysis [1.370633147306388]
This paper gives a comprehensive overview to help researchers who aim to work with recommender system and sentiment analysis.
It includes a background of the recommender system concept, including phases, approaches, and performance metrics used in recommender systems.
Then, it discusses the sentiment analysis concept and highlights the main points in the sentiment analysis, including level, approaches, and focuses on aspect-based sentiment analysis.
arXiv Detail & Related papers (2021-09-18T01:08:41Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Arabic Opinion Mining Using a Hybrid Recommender System Approach [0.0]
This research focuses on Arabic reviews, where the model is evaluated using Opinion Corpus for Arabic dataset.
Our system was efficient, and it showed a good accuracy of nearly 85 percent in predicting rating from reviews.
arXiv Detail & Related papers (2020-09-16T00:21:56Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z) - Sequential Recommender Systems: Challenges, Progress and Prospects [50.12218578518894]
sequential recommender systems (SRSs) try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users preferences and item popularity over time.
We first present the characteristics of SRSs, then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic.
arXiv Detail & Related papers (2019-12-28T05:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.