Unmasking Falsehoods in Reviews: An Exploration of NLP Techniques
- URL: http://arxiv.org/abs/2307.10617v3
- Date: Mon, 24 Jul 2023 07:03:01 GMT
- Title: Unmasking Falsehoods in Reviews: An Exploration of NLP Techniques
- Authors: Anusuya Baby Hari Krishnan
- Abstract summary: This research paper proposes a machine learning model to identify deceptive reviews.
To accomplish this, an n-gram model and max features are developed to effectively identify deceptive content.
The experimental results reveal that the passive aggressive classifier stands out among the various algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the contemporary digital landscape, online reviews have become an
indispensable tool for promoting products and services across various
businesses. Marketers, advertisers, and online businesses have found incentives
to create deceptive positive reviews for their products and negative reviews
for their competitors' offerings. As a result, the writing of deceptive reviews
has become an unavoidable practice for businesses seeking to promote themselves
or undermine their rivals. Detecting such deceptive reviews has become an
intense and ongoing area of research. This research paper proposes a machine
learning model to identify deceptive reviews, with a particular focus on
restaurants. This study delves into the performance of numerous experiments
conducted on a dataset of restaurant reviews known as the Deceptive Opinion
Spam Corpus. To accomplish this, an n-gram model and max features are developed
to effectively identify deceptive content, particularly focusing on fake
reviews. A benchmark study is undertaken to explore the performance of two
different feature extraction techniques, which are then coupled with five
distinct machine learning classification algorithms. The experimental results
reveal that the passive aggressive classifier stands out among the various
algorithms, showcasing the highest accuracy not only in text classification but
also in identifying fake reviews. Moreover, the research delves into data
augmentation and implements various deep learning techniques to further enhance
the process of detecting deceptive reviews. The findings shed light on the
efficacy of the proposed machine learning approach and offer valuable insights
into dealing with deceptive reviews in the realm of online businesses.
Related papers
- What Matters in Explanations: Towards Explainable Fake Review Detection Focusing on Transformers [45.55363754551388]
Customers' reviews and feedback play crucial role on e-commerce platforms like Amazon, Zalando, and eBay.
There is a prevailing concern that sellers often post fake or spam reviews to deceive potential customers and manipulate their opinions about a product.
We propose an explainable framework for detecting fake reviews with high precision in identifying fraudulent content with explanations.
arXiv Detail & Related papers (2024-07-24T13:26:02Z) - Enhanced Review Detection and Recognition: A Platform-Agnostic Approach with Application to Online Commerce [0.46040036610482665]
We present a machine learning methodology for review detection and extraction.
We demonstrate that it generalises for use across websites that were not contained in the training data.
This method promises to drive applications for automatic detection and evaluation of reviews, regardless of their source.
arXiv Detail & Related papers (2024-05-09T00:32:22Z) - Combat AI With AI: Counteract Machine-Generated Fake Restaurant Reviews
on Social Media [77.34726150561087]
We propose to leverage the high-quality elite Yelp reviews to generate fake reviews from the OpenAI GPT review creator.
We apply the model to predict non-elite reviews and identify the patterns across several dimensions.
We show that social media platforms are continuously challenged by machine-generated fake reviews.
arXiv Detail & Related papers (2023-02-10T19:40:10Z) - Online Fake Review Detection Using Supervised Machine Learning And BERT
Model [0.0]
We propose to use BERT (Bidirectional Representation from Transformers) model to extract word embeddings from texts (i.e. reviews)
The results indicate that the SVM classifiers outperform the others in terms of accuracy and f1-score with an accuracy of 87.81%.
arXiv Detail & Related papers (2023-01-09T09:40:56Z) - A Dataset on Malicious Paper Bidding in Peer Review [84.68308372858755]
Malicious reviewers strategically bid in order to unethically manipulate the paper assignment.
A critical impediment towards creating and evaluating methods to mitigate this issue is the lack of publicly-available data on malicious paper bidding.
We release a novel dataset, collected from a mock conference activity where participants were instructed to bid either honestly or maliciously.
arXiv Detail & Related papers (2022-06-24T20:23:33Z) - Opinion Spam Detection: A New Approach Using Machine Learning and
Network-Based Algorithms [2.062593640149623]
Online reviews play a crucial role in helping consumers evaluate and compare products and services.
Fake reviews (opinion spam) are becoming more prevalent and negatively impacting customers and service providers.
We propose a new method for classifying reviewers as spammers or benign, combining machine learning with a message-passing algorithm.
arXiv Detail & Related papers (2022-05-26T15:27:46Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews [13.018530502810128]
This paper proposes, a deep learning-based technique (i.e., BiLSTM) to classify the reviews provided by the clients of the restaurant into positive and negative polarities.
The results of the evaluation on test dataset show that BiLSTM technique produced in the highest accuracy of 91.35%.
arXiv Detail & Related papers (2020-11-19T06:24:42Z) - Fake Reviews Detection through Analysis of Linguistic Features [1.609940380983903]
This paper explores a natural language processing approach to identify fake reviews.
We study 15 linguistic features for distinguishing fake and trustworthy online reviews.
We were able to discriminate fake from real reviews with high accuracy using these linguistic features.
arXiv Detail & Related papers (2020-10-08T21:16:30Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
We propose our Deep Intents Sequential Advertising (DISA) method to address these issues.
The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states)
arXiv Detail & Related papers (2020-09-03T05:12:26Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
We propose a novel model to transfer opinions knowledge from resource-rich review sentiment classification datasets to low-resource task TOWE.
Our model achieves better performance compared to other state-of-the-art methods and significantly outperforms the base model without transferring opinions knowledge.
arXiv Detail & Related papers (2020-01-07T11:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.