論文の概要: SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar
- arxiv url: http://arxiv.org/abs/2012.14011v1
- Date: Sun, 27 Dec 2020 21:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 20:16:06.148545
- Title: SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar
- Title(参考訳): SMART:分散文法を用いた代数的ストーリー問題の状況モデル
- Authors: Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang, Song-Chun
Zhu
- Abstract要約: 本稿では, 問題解決における人間の精神状態を表現する心理学研究から生まれた, emphsituation modelの概念を紹介する。
提案モデルでは,より優れた解釈性を保ちながら,従来のすべてのニューラルソルバを大きなマージンで上回る結果が得られた。
- 参考スコア(独自算出の注目度): 74.1315776256292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving algebra story problems remains a challenging task in artificial
intelligence, which requires a detailed understanding of real-world situations
and a strong mathematical reasoning capability. Previous neural solvers of math
word problems directly translate problem texts into equations, lacking an
explicit interpretation of the situations, and often fail to handle more
sophisticated situations. To address such limits of neural solvers, we
introduce the concept of a \emph{situation model}, which originates from
psychology studies to represent the mental states of humans in problem-solving,
and propose \emph{SMART}, which adopts attributed grammar as the representation
of situation models for algebra story problems. Specifically, we first train an
information extraction module to extract nodes, attributes, and relations from
problem texts and then generate a parse graph based on a pre-defined attributed
grammar. An iterative learning strategy is also proposed to improve the
performance of SMART further. To rigorously study this task, we carefully
curate a new dataset named \emph{ASP6.6k}. Experimental results on ASP6.6k show
that the proposed model outperforms all previous neural solvers by a large
margin while preserving much better interpretability. To test these models'
generalization capability, we also design an out-of-distribution (OOD)
evaluation, in which problems are more complex than those in the training set.
Our model exceeds state-of-the-art models by 17\% in the OOD evaluation,
demonstrating its superior generalization ability.
- Abstract(参考訳): 代数的ストーリー問題の解決は、現実の状況の詳細な理解と強力な数学的推論能力を必要とする人工知能において依然として難しい課題である。
数学の単語問題の以前の神経解法は、問題テキストを直接方程式に変換し、状況の明確な解釈を欠き、しばしばより洗練された状況に対処できない。
このようなニューラルソルバの限界に対処するために,問題解決における人間の精神状態を表現する心理学的研究から生まれた \emph{situation model} の概念を導入し,代数的ストーリー問題の状況モデルの表現として帰属文法を採用する \emph{smart} を提案する。
具体的には、まず、問題テキストからノード、属性、関係を抽出するための情報抽出モジュールを訓練し、事前定義された帰属文法に基づいてパースグラフを生成する。
また,SMARTの性能向上のための反復学習戦略も提案されている。
このタスクを厳密に研究するために、新しいデータセットである \emph{ASP6.6k} を慎重にキュレートする。
asp6.6kの実験結果は、提案モデルが、より優れた解釈性を維持しつつ、従来の全ての神経ソルバを大きなマージンで上回っていることを示している。
これらのモデルの一般化能力をテストするために、我々は、トレーニングセットよりも問題を複雑にするout-of-distribution (ood) 評価も設計する。
本モデルでは,OOD評価における最先端モデルよりも17倍の精度で,より優れた一般化能力を示す。
関連論文リスト
- Are Deep Neural Networks SMARTer than Second Graders? [85.60342335636341]
6~8歳児を対象としたビジュオ言語パズルの解法において,ニューラルネットワークの抽象化,推論,一般化能力の評価を行った。
我々のデータセットは101のユニークなパズルで構成されており、各パズルは絵の質問で構成されており、それらの解には算術、代数学、空間推論を含むいくつかの基本的なスキルが混在している必要がある。
実験により、強力なディープモデルは教師付き設定でパズルに合理的な性能を与えるが、一般化のために解析するとランダムな精度よりは良くないことが明らかになった。
論文 参考訳(メタデータ) (2022-12-20T04:33:32Z) - A Causal Framework to Quantify the Robustness of Mathematical Reasoning
with Language Models [81.15974174627785]
入力空間における直接的介入に対する頑健さと感度の観点から言語モデルの振舞いについて検討する。
しかし, GPT-3 Davinciモデル(175B)は, 他のGPTモデルと比較して, 頑健さと感度の両面で劇的な改善を実現している。
論文 参考訳(メタデータ) (2022-10-21T15:12:37Z) - Heterogeneous Line Graph Transformer for Math Word Problems [21.4761673982334]
本稿では,オンライン学習システムのための新しい機械学習モデルの設計と実装について述べる。
我々は,自動算術語問題解決システムの実現により,システムの知能レベルを向上することを目指している。
論文 参考訳(メタデータ) (2022-08-11T05:27:05Z) - Tackling Math Word Problems with Fine-to-Coarse Abstracting and
Reasoning [22.127301797950572]
本稿では,局所的なきめ細かい情報と,その大域的な論理構造の両方を捉えるために,微粒な方法で数学語問題をモデル化することを提案する。
我々のモデルは局所的な変動に自然に敏感であり、目に見えない問題タイプにより良い一般化が可能である。
論文 参考訳(メタデータ) (2022-05-17T12:14:44Z) - NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning
Tasks [37.730939229638224]
8つのタスクでAIシステムの性能を評価するベンチマークであるNumGLUEを提案する。
このベンチマークは、最先端の大規模言語モデルを含むニューラルモデルで解決されるには程遠い。
我々はNumGLUEが言語内で堅牢で一般的な算術推論を行うシステムを促進することを願っている。
論文 参考訳(メタデータ) (2022-04-12T09:36:10Z) - Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks [130.70449023574537]
我々のNS-rは、問題を読み取り、問題をエンコードする問題リーダーと、記号方程式を生成するプログラマと、答えを得るシンボリックエグゼキュータから構成される。
また, 目的表現の監督とともに, 4つの新たな補助的目的によって, 異なる記号的推論を強制的に行うように最適化した。
論文 参考訳(メタデータ) (2021-07-03T13:14:58Z) - Recognizing and Verifying Mathematical Equations using Multiplicative
Differential Neural Units [86.9207811656179]
メモリ拡張ニューラルネットワーク(NN)は、高次、メモリ拡張外挿、安定した性能、より高速な収束を実現することができることを示す。
本モデルでは,現在の手法と比較して1.53%の精度向上を達成し,2.22%のtop-1平均精度と2.96%のtop-5平均精度を達成している。
論文 参考訳(メタデータ) (2021-04-07T03:50:11Z) - Generating Math Word Problems from Equations with Topic Controlling and
Commonsense Enforcement [11.459200644989227]
本稿では,新しいテキスト生成モデルを提案する。
本モデルでは, 方程式を効果的に符号化するフレキシブルなスキームを提案し, 可変オートエンコーダ(VAE)による方程式エンコーダを強化する。
論文 参考訳(メタデータ) (2020-12-14T10:02:11Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。