論文の概要: Large Language Models and Mathematical Reasoning Failures
- arxiv url: http://arxiv.org/abs/2502.11574v2
- Date: Fri, 21 Feb 2025 11:04:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 12:50:08.163453
- Title: Large Language Models and Mathematical Reasoning Failures
- Title(参考訳): 大規模言語モデルと数学的推論失敗
- Authors: Johan Boye, Birger Moell,
- Abstract要約: 本稿では,50の高校レベルの単語問題を用いた大規模言語モデル(LLM)の数学的推論能力について検討する。
最終回答と解決手順の両方を厳格に分析して、推論の失敗を特定します。
より新しいモデル(例えば、o3-mini、deepseek-r1)はより精度が高いが、全てのモデルは空間的推論、戦略的計画、算術における誤りを示す。
- 参考スコア(独自算出の注目度): 1.6114012813668932
- License:
- Abstract: This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
- Abstract(参考訳): 本稿では,50の高校レベルの単語問題を用いた大規模言語モデル(LLM)の数学的推論能力について検討する。
答えの正しさのみに焦点を当てた以前の研究とは異なり、最終的な答えと解決策のステップの両方を厳格に分析して、推論の失敗を特定します。
Mixtral、Llama、Gemini、GPT-4o、OpenAIのo1変種を含む8つの最先端モデルを評価すると、新しいモデル(例えば、o3-mini、deepseek-r1)がより高い精度を達成する一方で、すべてのモデルは空間的推論、戦略的計画、算術におけるエラーを示し、時には欠陥のあるロジックによって正しい答えを生み出すことが分かる。
一般的な失敗モードには、不確実な仮定、数値パターンの過度な信頼、物理的直観を数学的ステップに変換するのが困難である。
手動分析により、モデルは幅広い数学的知識を持っているにもかかわらず、多段階の推論や現実世界の知識を必要とする問題に苦しむことが明らかになった。
以上の結果から,LLMの問題解決能力の過大評価に留意することの重要性が示唆された。
この研究は、LLMの一般化能力の持続的なギャップを強調し、構造化推論と制約処理の目標改善の必要性を強調した。
関連論文リスト
- Mathematical Reasoning in Large Language Models: Assessing Logical and Arithmetic Errors across Wide Numerical Ranges [0.0]
GSM-Rangesは、数学問題における数値を体系的に摂動させ、様々な数値スケールでモデルロバスト性を評価するデータセットジェネレータである。
また,論理的誤りと非論理的誤りを区別し,推論過程を計算精度以上の精度で評価する手法を提案する。
論文 参考訳(メタデータ) (2025-02-12T09:53:10Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
各種モデルにおけるMATH-P-Hardの性能低下を観察する。
また、学習した問題解決スキルを盲目的に適用する新しい形態の記憶に関する懸念も提起する。
論文 参考訳(メタデータ) (2025-02-10T13:31:46Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
我々は、大言語モデルの厳密な評価のための合成推論ベンチマークであるJustLogicを紹介する。
JustLogicは非常に複雑で、多様な言語パターン、語彙、引数構造を生成することができる。
実験の結果,ほとんどのSOTA (State-of-the-art (SOTA) LLMは人体平均よりも著しく低下していることがわかった。
論文 参考訳(メタデータ) (2025-01-24T15:49:10Z) - ProcessBench: Identifying Process Errors in Mathematical Reasoning [62.80402845414901]
本稿では,数学的推論における誤ったステップを識別する能力を測定するためのProcessBenchを紹介する。
ProcessBenchは3400のテストケースで構成され、主に競合とオリンピアードレベルの数学問題に焦点を当てている。
我々はProcessBenchについて、プロセス報酬モデル(PRM)と批判モデルという2種類のモデルを含む広範囲な評価を行う。
論文 参考訳(メタデータ) (2024-12-09T15:11:40Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
大言語モデル (LLM) は数学語問題 (MWP) に適用されている。
本稿では,ルールベース手法とより小さな言語モデルにより生成される正しい推論ステップと誤推論ステップをMWPに組み込んだ,新しいデータセットMWP-MISTAKEを提案する。
GPT-$oの誤り検出と修正における優れた性能と、より小さなモデルで直面する永続的な課題を強調した。
論文 参考訳(メタデータ) (2024-06-16T08:06:05Z) - Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning [30.40415945003794]
数学的推論における大規模言語モデル(LLM)の構成性について検討する。
論理的欠陥の問題は実世界では非常に稀であるため、これらはLLMの「見えない」ケースを表している。
実験の結果, LLM には必要知識の双方の構成要素があるが, これらの新規事例を扱うために, テキストbfspontanely に組み合わせることはできないことがわかった。
論文 参考訳(メタデータ) (2024-05-05T16:35:30Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
概念とHint-Annotated Math Problems (CHAMP) は、概念に注釈を付けた高校数学の競争問題である。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
モデルはしばしば、間違った推論ステップを通じて、正しい最終回答に到達します。
論文 参考訳(メタデータ) (2024-01-13T03:18:16Z) - SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar [74.1315776256292]
本稿では, 問題解決における人間の精神状態を表現する心理学研究から生まれた, emphsituation modelの概念を紹介する。
提案モデルでは,より優れた解釈性を保ちながら,従来のすべてのニューラルソルバを大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2020-12-27T21:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。