論文の概要: A Survey on Neural Network Interpretability
- arxiv url: http://arxiv.org/abs/2012.14261v2
- Date: Wed, 3 Mar 2021 09:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 11:12:05.481116
- Title: A Survey on Neural Network Interpretability
- Title(参考訳): ニューラルネットワークの解釈可能性に関する調査
- Authors: Yu Zhang, Peter Ti\v{n}o, Ale\v{s} Leonardis, Ke Tang
- Abstract要約: 解釈性は、深層ネットワークが他の研究分野で強力なツールになるのに望ましい特性である。
本研究では,エンゲージメントのタイプ(パッシブ対アクティブ解釈アプローチ),説明のタイプ,焦点の3次元に整理した新しい分類法を提案する。
- 参考スコア(独自算出の注目度): 25.27545364222555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Along with the great success of deep neural networks, there is also growing
concern about their black-box nature. The interpretability issue affects
people's trust on deep learning systems. It is also related to many ethical
problems, e.g., algorithmic discrimination. Moreover, interpretability is a
desired property for deep networks to become powerful tools in other research
fields, e.g., drug discovery and genomics. In this survey, we conduct a
comprehensive review of the neural network interpretability research. We first
clarify the definition of interpretability as it has been used in many
different contexts. Then we elaborate on the importance of interpretability and
propose a novel taxonomy organized along three dimensions: type of engagement
(passive vs. active interpretation approaches), the type of explanation, and
the focus (from local to global interpretability). This taxonomy provides a
meaningful 3D view of distribution of papers from the relevant literature as
two of the dimensions are not simply categorical but allow ordinal
subcategories. Finally, we summarize the existing interpretability evaluation
methods and suggest possible research directions inspired by our new taxonomy.
- Abstract(参考訳): ディープニューラルネットワークの成功に加えて、ブラックボックスの性質についても懸念が高まっている。
解釈可能性問題は、深層学習システムに対する人々の信頼に影響する。
また、アルゴリズム的差別など多くの倫理的問題にも関係している。
さらに、解釈性は、深層ネットワークが他の研究分野、例えば創薬やゲノム学において強力なツールとなるために望ましい性質である。
本稿では,ニューラルネットワークの解釈可能性研究の包括的レビューを行う。
まず,様々な文脈で用いられてきた解釈可能性の定義を明らかにする。
次に, 解釈可能性の重要性を詳述し, 3次元的に整理した新しい分類法, エンゲージメントの種類(受動的対アクティブ解釈アプローチ), 説明の種類, 焦点(局所的からグローバル的解釈可能性まで)を提案する。
この分類学は、関係文献からの論文の分布を意味のある3次元の視点で示すもので、次元の2つは単にカテゴリーではなく順序のサブカテゴリを許容するものである。
最後に,既存の解釈可能性評価手法を要約し,新しい分類法に触発された研究の方向性を提案する。
関連論文リスト
- Explaining Deep Neural Networks by Leveraging Intrinsic Methods [0.9790236766474201]
この論文はeXplainable AIの分野に貢献し、ディープニューラルネットワークの解釈可能性の向上に重点を置いている。
中心となる貢献は、これらのネットワークをより解釈しやすくすることを目的とした新しい技術の導入である。
第2に、この研究は、訓練された深層ニューラルネットワーク内のニューロンに関する新しい研究を掘り下げ、その活性化値に関連する見過ごされた現象に光を当てた。
論文 参考訳(メタデータ) (2024-07-17T01:20:17Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
本論は、内部表現と人間の理解可能な概念を関連付けることを目的とした研究に焦点をあてる。
この分類学と因果関係の理論は、ニューラルネットワークの説明から期待できるもの、期待できないものを理解するのに有用である。
この分析は、モデル説明可能性の目標に関するレビューされた文献の曖昧さも明らかにしている。
論文 参考訳(メタデータ) (2022-12-31T12:56:12Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
外部知識を用いた新しいテキストリッチグラフニューラルネットワーク(TeKo)を提案する。
まず、高品質なエンティティを組み込んだフレキシブルな異種セマンティックネットワークを提案する。
次に、構造化三重項と非構造化実体記述という2種類の外部知識を導入する。
論文 参考訳(メタデータ) (2022-06-15T02:33:10Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Local Interpretations for Explainable Natural Language Processing: A Survey [5.717407321642629]
本研究では,自然言語処理(NLP)タスクにおけるディープニューラルネットワークの解釈可能性を改善するための様々な手法について検討する。
本研究のはじめに,解釈可能性という用語の定義とその諸側面について,包括的に議論する。
論文 参考訳(メタデータ) (2021-03-20T02:28:33Z) - Interpretable Deep Learning: Interpretations, Interpretability,
Trustworthiness, and Beyond [49.93153180169685]
一般に混同される2つの基本的な概念(解釈と解釈可能性)を紹介・明らかにする。
我々は,新しい分類法を提案することにより,異なる視点から,最近のいくつかの解釈アルゴリズムの設計を詳細に述べる。
信頼される」解釈アルゴリズムを用いてモデルの解釈可能性を評価する上での既存の作業をまとめる。
論文 参考訳(メタデータ) (2021-03-19T08:40:30Z) - Interpretability and Explainability: A Machine Learning Zoo Mini-tour [4.56877715768796]
解釈可能性と説明可能性は、医学、経済学、法学、自然科学における多くの機械学習および統計応用の中核にある。
本稿では,解釈可能性と説明可能性の相違を強調し,これら2つの研究方向について,その具体例を示す。
論文 参考訳(メタデータ) (2020-12-03T10:11:52Z) - Understanding the wiring evolution in differentiable neural architecture
search [114.31723873105082]
識別可能なニューラルネットワーク探索手法が配線トポロジを効果的に発見するかどうかについては議論がある。
既存の差別化可能なNASフレームワークの基盤メカニズムについて検討する。
論文 参考訳(メタデータ) (2020-09-02T18:08:34Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
本稿では,NNを連鎖グラフ(CG)、フィードフォワードを近似推論手法として識別する別の解釈を提案する。
CG解釈は、確率的グラフィカルモデルのリッチな理論的枠組みの中で、各NNコンポーネントの性質を規定する。
我々は,CG解釈が様々なNN技術に対する新しい理論的支援と洞察を提供することを示す具体例を実例で示す。
論文 参考訳(メタデータ) (2020-06-30T14:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。