A Guide to Global Quantum Key Distribution Networks
- URL: http://arxiv.org/abs/2012.14396v2
- Date: Fri, 26 Feb 2021 04:01:15 GMT
- Title: A Guide to Global Quantum Key Distribution Networks
- Authors: Jing Wang and Bernardo Huberman
- Abstract summary: We describe systems and methods for the deployment of global quantum key distribution (QKD) networks covering transoceanic, long-haul, metro, and access segments of the network.
A comparative study of the state-of-the-art QKD technologies is carried out, including both terrestrial QKD via optical fibers and free-space optics.
We compare the pros and cons of various existing QKD technologies, including channel loss, potential interference, distance, connection topology, deployment cost and requirements.
- Score: 3.540228410822215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe systems and methods for the deployment of global quantum key
distribution (QKD) networks covering transoceanic, long-haul, metro, and access
segments of the network. A comparative study of the state-of-the-art QKD
technologies is carried out, including both terrestrial QKD via optical fibers
and free-space optics, as well as spaceborne solutions via satellites. We
compare the pros and cons of various existing QKD technologies, including
channel loss, potential interference, distance, connection topology, deployment
cost and requirements, as well as application scenarios. Technical selection
criteria and deployment requirements are developed for various different QKD
solutions in each segment of networks. For example, optical fiber-based QKD is
suitable for access networks due to its limited distance and compatibility with
point-to-multipoint (P2MP) topology; with the help of trusted relays, it can be
extended to long-haul and metro networks. Spaceborne QKD on the other hand, has
much smaller channel loss and extended transmission distance, which can be used
for transoceanic and long-haul networks exploiting satellite-based trusted
relays.
Related papers
- Assessment of practical satellite quantum key distribution architectures for current and near-future missions [0.0]
We review the manifold of design choices that concur to form the set of possible SatQKD architectures.
We identify as advisable options the use of low-Earth orbit satellites as trusted nodes for prepare-and-measure discrete-variable QKD downlinks.
The decoy-state version of BB84 is found to be the most promising QKD protocols due to the maturity of the security proofs, the high key generation rate and low system complexity.
arXiv Detail & Related papers (2024-04-08T16:52:15Z) - MadQCI: a heterogeneous and scalable SDN QKD network deployed in
production facilities [0.0]
Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys with the highest possible rate.
This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably.
The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms.
arXiv Detail & Related papers (2023-11-21T18:57:21Z) - Blockwise Key Distillation in Satellite-based Quantum Key Distribution [68.8891637551539]
We compare two key distillation techniques for satellite-based quantum key distribution.
One is the traditional em non-blockwise strategy that treats all the signals as a whole.
The other is a em blockwise strategy that divides the signals into individual blocks that have similar noise characteristics and processes them independently.
arXiv Detail & Related papers (2023-07-10T01:34:58Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Finite key performance of satellite quantum key distribution under
practical constraints [0.0]
Global-scale quantum communication networks will require efficient long-distance distribution of quantum signals.
Satellites enable intercontinental quantum communication by exploiting more benign inverse square free-space attenuation and long sight lines.
arXiv Detail & Related papers (2023-01-30T19:00:01Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Feasibility Study for CubeSat Based Trusted Node Configuration Global
QKD Network [0.0]
Quantum key distribution (QKD) is the most used protocol in the context of quantum cryptography.
This paper summarizes technical challenges and possible solutions to enable a global QKD network using CubeSats.
arXiv Detail & Related papers (2021-02-26T15:13:31Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Adaptive Techniques in Practical Quantum Key Distribution [3.5027291542274357]
Quantum Key Distribution (QKD) can provide information-theoretically secure communications.
The performance of QKD is limited by "practical imperfections" in realistic sources, channels, and detectors.
We develop adaptive techniques with innovative protocol and algorithm design, as well as novel techniques such as machine learning.
arXiv Detail & Related papers (2020-04-23T07:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.