Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data
- URL: http://arxiv.org/abs/2110.15138v1
- Date: Thu, 28 Oct 2021 14:12:10 GMT
- Title: Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data
- Authors: Dong Liu, Jiankang Zhang, Jingjing Cui, Soon-Xin Ng, Robert G.
Maunder, Lajos Hanzo
- Abstract summary: Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
- Score: 79.96177511319713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current maritime communications mainly rely on satellites having meager
transmission resources, hence suffering from poorer performance than modern
terrestrial wireless networks. With the growth of transcontinental air traffic,
the promising concept of aeronautical ad hoc networking relying on commercial
passenger airplanes is potentially capable of enhancing satellite-based
maritime communications via air-to-ground and multi-hop air-to-air links. In
this article, we conceive space-air-ground integrated networks (SAGINs) for
supporting ubiquitous maritime communications, where the low-earth-orbit
satellite constellations, passenger airplanes, terrestrial base stations,
ships, respectively, serve as the space-, air-, ground- and sea-layer. To meet
heterogeneous service requirements, and accommodate the time-varying and
self-organizing nature of SAGINs, we propose a deep learning (DL) aided
multi-objective routing algorithm, which exploits the quasi-predictable network
topology and operates in a distributed manner. Our simulation results based on
real satellite, flight, and shipping data in the North Atlantic region show
that the integrated network enhances the coverage quality by reducing the
end-to-end (E2E) delay and by boosting the E2E throughput as well as improving
the path-lifetime. The results demonstrate that our DL-aided multi-objective
routing algorithm is capable of achieving near Pareto-optimal performance.
Related papers
- SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading [33.44828515877944]
We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
arXiv Detail & Related papers (2023-12-23T22:09:31Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - 6G in the Sky: On-Demand Intelligence at the Edge of 3D Networks [60.49776988771734]
6G will exploit satellite, aerial and terrestrial platforms jointly to improve radio access capability.
We consider an architecture providing communication, computation, and caching (C3) services on demand, anytime and everywhere in 3D space.
arXiv Detail & Related papers (2020-10-19T13:07:57Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.