Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis
- URL: http://arxiv.org/abs/2012.14564v1
- Date: Tue, 29 Dec 2020 01:54:09 GMT
- Title: Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis
- Authors: Yutian Chen, Xiaowei Xu, Dewen Zeng, Yiyu Shi, Haiyun Yuan, Jian
Zhuang, Yuhao Dong, Qianjun Jia, Meiping Huang
- Abstract summary: We propose a myocardial segmentation framework for sequence of cardiac MRI (CMR) scanning images of left ventricular cavity, right ventricular cavity, and myocardium.
Our framework can improve the segmentation accuracy by up to 2% in Dice coefficient.
- Score: 12.53412028532286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary artery disease (CAD) is the most common cause of death globally, and
its diagnosis is usually based on manual myocardial segmentation of Magnetic
Resonance Imaging (MRI) sequences. As the manual segmentation is tedious,
time-consuming and with low applicability, automatic myocardial segmentation
using machine learning techniques has been widely explored recently. However,
almost all the existing methods treat the input MRI sequences independently,
which fails to capture the temporal information between sequences, e.g., the
shape and location information of the myocardium in sequences along time. In
this paper, we propose a myocardial segmentation framework for sequence of
cardiac MRI (CMR) scanning images of left ventricular cavity, right ventricular
cavity, and myocardium. Specifically, we propose to combine conventional
networks and recurrent networks to incorporate temporal information between
sequences to ensure temporal consistent. We evaluated our framework on the
Automated Cardiac Diagnosis Challenge (ACDC) dataset. Experiment results
demonstrate that our framework can improve the segmentation accuracy by up to
2% in Dice coefficient.
Related papers
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Deep Learning for Automatic Strain Quantification in Arrhythmogenic
Right Ventricular Cardiomyopathy [0.0]
Quantification of cardiac motion with cine Cardiac Magnetic Resonance Imaging (CMRI) is an integral part of arrhythmogenic right ventricular cardiomyopathy (ARVC) diagnosis.
We develop a method to automatically assess cardiac motion using Implicit Neural Representations (INRs) and a deep learning approach.
Our results show that inter-slice alignment and generation of super-resolved volumes combined with joint analysis of the two cardiac views, notably improves registration performance.
arXiv Detail & Related papers (2023-11-24T12:55:36Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology
Segmentation [20.68539814306763]
Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI)
This work presents an automatic MyoPS framework for unaligned MS-CMR images.
arXiv Detail & Related papers (2023-02-07T15:41:40Z) - A Comprehensive 3-D Framework for Automatic Quantification of Late
Gadolinium Enhanced Cardiac Magnetic Resonance Images [5.947543669357994]
Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) can directly visualize nonviable myocardium with hyperenhanced intensities.
For heart attack patients, it is crucial to facilitate the decision of appropriate therapy by analyzing and quantifying their LGE CMR images.
To achieve accurate quantification, LGE CMR images need to be processed in two steps: segmentation of the myocardium followed by classification of infarcts.
arXiv Detail & Related papers (2022-05-21T11:54:39Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
We propose a framework to learn the 2D+time long-axis cardiac shape.
The identification and correction of cardiac inconsistencies relies on a constrained autoencoder trained to learn a physiologically interpretable embedding of cardiac shapes.
arXiv Detail & Related papers (2021-12-03T16:09:32Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.