CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR
- URL: http://arxiv.org/abs/2507.02289v1
- Date: Thu, 03 Jul 2025 03:52:59 GMT
- Title: CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR
- Authors: Wangbin Ding, Lei Li, Junyi Qiu, Bogen Lin, Mingjing Yang, Liqin Huang, Lianming Wu, Sihan Wang, Xiahai Zhuang,
- Abstract summary: Myocardial infarction (MI) is a leading cause of death worldwide.<n>We present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies.<n>CineMyoPS extracts both motion and anatomy features associated with MI.
- Score: 19.888753279183266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Myocardial infarction (MI) is a leading cause of death worldwide. Late gadolinium enhancement (LGE) and T2-weighted cardiac magnetic resonance (CMR) imaging can respectively identify scarring and edema areas, both of which are essential for MI risk stratification and prognosis assessment. Although combining complementary information from multi-sequence CMR is useful, acquiring these sequences can be time-consuming and prohibitive, e.g., due to the administration of contrast agents. Cine CMR is a rapid and contrast-free imaging technique that can visualize both motion and structural abnormalities of the myocardium induced by acute MI. Therefore, we present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies, \ie scars and edema, solely from cine CMR images. Specifically, CineMyoPS extracts both motion and anatomy features associated with MI. Given the interdependence between these features, we design a consistency loss (resembling the co-training strategy) to facilitate their joint learning. Furthermore, we propose a time-series aggregation strategy to integrate MI-related features across the cardiac cycle, thereby enhancing segmentation accuracy for myocardial pathologies. Experimental results on a multi-center dataset demonstrate that CineMyoPS achieves promising performance in myocardial pathology segmentation, motion estimation, and anatomy segmentation.
Related papers
- Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge [56.28872161153236]
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis.<n>The efficacy of these models is highly dependent on the availability of high-quality, artifact-free images.<n>To promote research in this domain, we organized the MICCAI CMRxMotion challenge.
arXiv Detail & Related papers (2025-07-25T11:12:21Z) - CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation [3.052913696182197]
We introduce CLAIM: textbfClinically-Guided textbfLGE textbfAugmentation for Realtextbfiiyocardial Scar Synthesis and framework.<n>At its core is the SMILE module, which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns.<n> Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models.
arXiv Detail & Related papers (2025-06-18T15:21:34Z) - Contrast-Free Myocardial Scar Segmentation in Cine MRI using Motion and Texture Fusion [27.62353966697765]
We propose a novel framework that combines cardiac motion observed in cine MRI with image texture information to segment the myocardium and scar tissue in the left ventricle.<n> Experimental results prove that the proposed method can achieve scar segmentation based on non-contrasted cine images with comparable accuracy to LGE MRI.
arXiv Detail & Related papers (2025-01-09T13:46:46Z) - Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology
Segmentation [20.68539814306763]
Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI)
This work presents an automatic MyoPS framework for unaligned MS-CMR images.
arXiv Detail & Related papers (2023-02-07T15:41:40Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Multi-Modality Cardiac Image Analysis with Deep Learning [16.814634972950717]
Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is a promising technique to visualize and quantify myocardial infarction (MI) and atrial scars.
This chapter aims to summarize the state-of-the-art and our recent advanced contributions on deep learning based multi-modality cardiac image analysis.
arXiv Detail & Related papers (2021-11-08T12:54:11Z) - Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis [12.53412028532286]
We propose a myocardial segmentation framework for sequence of cardiac MRI (CMR) scanning images of left ventricular cavity, right ventricular cavity, and myocardium.
Our framework can improve the segmentation accuracy by up to 2% in Dice coefficient.
arXiv Detail & Related papers (2020-12-29T01:54:09Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark
Study from Multi-Sequence Cardiac MR Segmentation Challenge [43.01944884184009]
This paper presents the selective results from the Multi-Sequence MR (MS-CMR) challenge, in conjunction with MII 2019.
It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation and compare them objectively.
The success of these methods was mainly attributed to the inclusion of auxiliary sequences from the MS-CMR images.
arXiv Detail & Related papers (2020-06-22T17:04:38Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.