論文の概要: COIN: Contrastive Identifier Network for Breast Mass Diagnosis in
Mammography
- arxiv url: http://arxiv.org/abs/2012.14690v1
- Date: Tue, 29 Dec 2020 10:02:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 20:44:08.737155
- Title: COIN: Contrastive Identifier Network for Breast Mass Diagnosis in
Mammography
- Title(参考訳): マンモグラフィにおける乳房腫瘤診断のための造影診断ネットワーク
- Authors: Heyi Li, Dongdong Chen, William H. Nailon, Mike E. Davies, and David
Laurenson
- Abstract要約: マンモグラフィーにおけるコンピュータ支援乳がん診断は, マンモグラフィーデータの不足とデータ絡み合いから生じる課題である。
本論文では,対比拡大とマニホールドに基づく対比学習を統合した深層学習フレームワークであるContrastive Identifier Network(textscCOIN)を提案する。
COINは、乳がん診断問題を解決するための最新の関連アルゴリズムをかなりのマージンで上回り、93.4%の精度と95.0%のAUCスコアを達成しています。
- 参考スコア(独自算出の注目度): 16.603205672169608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided breast cancer diagnosis in mammography is a challenging
problem, stemming from mammographical data scarcity and data entanglement. In
particular, data scarcity is attributed to the privacy and expensive
annotation. And data entanglement is due to the high similarity between benign
and malignant masses, of which manifolds reside in lower dimensional space with
very small margin. To address these two challenges, we propose a deep learning
framework, named Contrastive Identifier Network (\textsc{COIN}), which
integrates adversarial augmentation and manifold-based contrastive learning.
Firstly, we employ adversarial learning to create both on- and off-distribution
mass contained ROIs. After that, we propose a novel contrastive loss with a
built Signed graph. Finally, the neural network is optimized in a contrastive
learning manner, with the purpose of improving the deep model's
discriminativity on the extended dataset. In particular, by employing COIN,
data samples from the same category are pulled close whereas those with
different labels are pushed further in the deep latent space. Moreover, COIN
outperforms the state-of-the-art related algorithms for solving breast cancer
diagnosis problem by a considerable margin, achieving 93.4\% accuracy and
95.0\% AUC score. The code will release on ***.
- Abstract(参考訳): マンモグラフィーにおけるコンピュータ支援乳がん診断は, マンモグラフィーデータの不足とデータ絡み合いから生じる課題である。
特にデータの不足は、プライバシと高価なアノテーションによるものだ。
そして、データの絡み合いは良性塊と悪性塊の間の高い類似性によるもので、その内の多様体は非常に小さいマージンの低次元空間に存在する。
これら2つの課題に対処するために,逆数拡大と多様体に基づくコントラスト学習を統合したContrastive Identifier Network (\textsc{COIN}) というディープラーニングフレームワークを提案する。
まず、対人学習を用いて、ROIを含むオン・オフ・ディストリビューション・マスを創出する。
その後,サイン付きグラフを組み込んだ新しいコントラスト損失を提案する。
最後に、ニューラルネットワークは、拡張データセットにおける深層モデルの識別性を改善する目的で、対照的な学習方法で最適化される。
特に、COINを用いることで、同一カテゴリのデータサンプルを近づき、異なるラベルを持つデータはより深い潜伏空間でプッシュされる。
さらに、COINは、乳癌の診断問題を解決するための最先端のアルゴリズムをかなりのマージンで上回り、93.4\%の精度と95.0\%のAUCスコアを達成している。
コードは***でリリースされる。
関連論文リスト
- Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
本稿では,マスセグメンテーションのための半弱教師付き学習フレームワークを提案する。
良好な性能を得るために, 限られた強ラベルのサンプルと十分な弱ラベルのサンプルを用いる。
CBIS-DDSMおよびINbreastデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T12:05:25Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
がん患者生存のマルチモーダル予測は、より包括的で正確なアプローチを提供する。
本稿では、畳み込みマスクエンコーダに基づく異種グラフ認識ネットワークであるSELECTORを紹介する。
本手法は,モダリティ欠落とモダリティ内情報確認の両事例において,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T11:23:39Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
本稿では,マンモグラム画像処理のための新しいディープラーニングフレームワークを提案する。
本手法はデュアルパスアーキテクチャで構築され,そのマッピングをデュアルプロブレム方式で解決する。
実験の結果,DualCoreNetはマンモグラフィーのセグメンテーションと分類を同時に達成し,最近の最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-08-07T02:23:36Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。