Decentralized Control with Graph Neural Networks
- URL: http://arxiv.org/abs/2012.14906v1
- Date: Tue, 29 Dec 2020 18:59:14 GMT
- Title: Decentralized Control with Graph Neural Networks
- Authors: Fernando Gama, Qingbiao Li, Ekaterina Tolstaya, Amanda Prorok,
Alejandro Ribeiro
- Abstract summary: We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
- Score: 147.84766857793247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical systems consisting of a set of autonomous agents face the challenge
of having to accomplish a global task, relying only on local information. While
centralized controllers are readily available, they face limitations in terms
of scalability and implementation, as they do not respect the distributed
information structure imposed by the network system of agents. Given the
difficulties in finding optimal decentralized controllers, we propose a novel
framework using graph neural networks (GNNs) to learn these controllers. GNNs
are well-suited for the task since they are naturally distributed architectures
and exhibit good scalability and transferability properties. The problems of
flocking and multi-agent path planning are explored to illustrate the potential
of GNNs in learning decentralized controllers.
Related papers
- A Scalable Network-Aware Multi-Agent Reinforcement Learning Framework
for Decentralized Inverter-based Voltage Control [9.437235548820505]
This paper addresses the challenges associated with decentralized voltage control in power grids due to an increase in distributed generations (DGs)
Traditional model-based voltage control methods struggle with the rapid energy fluctuations and uncertainties of these DGs.
We propose a scalable network-aware (SNA) framework that leverages network structure to truncate the input to the critic's Q-function.
arXiv Detail & Related papers (2023-12-07T15:42:53Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
Collaboration in large robot swarms to achieve a common global objective is a challenging problem in large environments.
The robots must execute a Perception-Action-Communication loop -- they perceive their local environment, communicate with other robots, and take actions in real time.
Recently, this has been addressed using Graph Neural Networks (GNNs) for applications such as flocking and coverage control.
This paper proposes a framework for asynchronous PAC in robot swarms, where decentralized GNNs are used to compute navigation actions and generate messages for communication.
arXiv Detail & Related papers (2023-09-18T21:20:50Z) - Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach [0.0]
Large-scale cyber-physical systems require that control policies are distributed, that is, that they only rely on local real-time measurements and communication with neighboring agents.
Recent work has proposed training Neural Network (NN) distributed controllers.
A main challenge of NN controllers is that they are not dependable during and after training, that is, the closed-loop system may be unstable, and the training may fail due to vanishing and exploding gradients.
arXiv Detail & Related papers (2021-12-16T17:37:11Z) - Scalable Perception-Action-Communication Loops with Convolutional and
Graph Neural Networks [208.15591625749272]
We present a perception-action-communication loop design using Vision-based Graph Aggregation and Inference (VGAI)
Our framework is implemented by a cascade of a convolutional and a graph neural network (CNN / GNN), addressing agent-level visual perception and feature learning.
We demonstrate that VGAI yields performance comparable to or better than other decentralized controllers.
arXiv Detail & Related papers (2021-06-24T23:57:21Z) - Communication Topology Co-Design in Graph Recurrent Neural Network Based
Distributed Control [4.492630871726495]
We introduce a compact but expressive graph recurrent neural network (GRNN) parameterization of distributed controllers.
Our proposed parameterization enjoys a local and distributed architecture, similar to previous Graph Neural Network (GNN)-based parameterizations.
We show that our method allows for performance/communication density tradeoff curves to be efficiently approximated.
arXiv Detail & Related papers (2021-04-28T16:30:02Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Graph Neural Networks for Decentralized Controllers [171.6642679604005]
Dynamical systems comprised of autonomous agents arise in many relevant problems such as robotics, smart grids, or smart cities.
Optimal centralized controllers are readily available but face limitations in terms of scalability and practical implementation.
We propose a framework using graph neural networks (GNNs) to learn decentralized controllers from data.
arXiv Detail & Related papers (2020-03-23T13:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.