Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks
- URL: http://arxiv.org/abs/2006.15005v1
- Date: Fri, 26 Jun 2020 14:20:48 GMT
- Title: Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks
- Authors: Zhan Gao and Mark Eisen and Alejandro Ribeiro
- Abstract summary: This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
- Score: 119.81868223344173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the optimal resource allocation in free space optical
(FSO) fronthaul networks. The optimal allocation maximizes an average weighted
sum-capacity subject to power limitation and data congestion constraints. Both
adaptive power assignment and node selection are considered based on the
instantaneous channel state information (CSI) of the links. By parameterizing
the resource allocation policy, we formulate the problem as an unsupervised
statistical learning problem. We consider the graph neural network (GNN) for
the policy parameterization to exploit the FSO network structure with
small-scale training parameters. The GNN is shown to retain the permutation
equivariance that matches with the permutation equivariance of resource
allocation policy in networks. The primal-dual learning algorithm is developed
to train the GNN in a model-free manner, where the knowledge of system models
is not required. Numerical simulations present the strong performance of the
GNN relative to a baseline policy with equal power assignment and random node
selection.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation.
The dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs.
In this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC.
arXiv Detail & Related papers (2023-06-15T08:21:41Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.