Improving Adversarial Robustness in Weight-quantized Neural Networks
- URL: http://arxiv.org/abs/2012.14965v2
- Date: Sat, 23 Jan 2021 23:32:39 GMT
- Title: Improving Adversarial Robustness in Weight-quantized Neural Networks
- Authors: Chang Song, Elias Fallon, Hai Li
- Abstract summary: Quantization is a useful technique in deploying neural networks on hardware platforms.
Recent research reveals that neural network models, no matter full-precision or quantized, are vulnerable to adversarial attacks.
We propose a boundary-based retraining method to mitigate adversarial and quantization losses together.
- Score: 4.794745827538956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are getting deeper and more computation-intensive nowadays.
Quantization is a useful technique in deploying neural networks on hardware
platforms and saving computation costs with negligible performance loss.
However, recent research reveals that neural network models, no matter
full-precision or quantized, are vulnerable to adversarial attacks. In this
work, we analyze both adversarial and quantization losses and then introduce
criteria to evaluate them. We propose a boundary-based retraining method to
mitigate adversarial and quantization losses together and adopt a nonlinear
mapping method to defend against white-box gradient-based adversarial attacks.
The evaluations demonstrate that our method can better restore accuracy after
quantization than other baseline methods on both black-box and white-box
adversarial attacks. The results also show that adversarial training suffers
quantization loss and does not cooperate well with other training methods.
Related papers
- Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - How does unlabeled data improve generalization in self-training? A
one-hidden-layer theoretical analysis [93.37576644429578]
This work establishes the first theoretical analysis for the known iterative self-training paradigm.
We prove the benefits of unlabeled data in both training convergence and generalization ability.
Experiments from shallow neural networks to deep neural networks are also provided to justify the correctness of our established theoretical insights on self-training.
arXiv Detail & Related papers (2022-01-21T02:16:52Z) - A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness [4.794745827538956]
We find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models.
We propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network.
Experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.
arXiv Detail & Related papers (2021-10-23T22:11:30Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - On the Adversarial Robustness of Quantized Neural Networks [2.0625936401496237]
It is unclear how model compression techniques may affect the robustness of AI algorithms against adversarial attacks.
This paper explores the effect of quantization, one of the most common compression techniques, on the adversarial robustness of neural networks.
arXiv Detail & Related papers (2021-05-01T11:46:35Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
Training deep learning models with low-precision weights and activations involves a demanding optimization task.
We show how to overcome the nature of network quantization.
We also show numerical evidence of the recurrence phenomenon of weight evolution in training quantized deep networks.
arXiv Detail & Related papers (2020-12-10T09:14:43Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Depth-2 Neural Networks Under a Data-Poisoning Attack [2.105564340986074]
We study the possibility of defending against data-poisoning attacks while training a shallow neural network in a regression setup.
In this work, we focus on doing supervised learning for a class of depth-2 finite-width neural networks.
arXiv Detail & Related papers (2020-05-04T17:56:15Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.