論文の概要: Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks
- arxiv url: http://arxiv.org/abs/2012.15037v2
- Date: Tue, 5 Jan 2021 04:51:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 06:05:15.853455
- Title: Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks
- Title(参考訳): 多方向時空間ネットワークに基づく共同空気質と天気予報
- Authors: Jindong Han, Hao Liu, Hengshu Zhu, Hui Xiong, Dejing Dou
- Abstract要約: 本稿では,複数対数連続グラフニューラルネットワーク(MasterGNN)を共同空気質と天気予報のために提案する。
具体的には,大気質と気象モニタリングステーション間の不均一な自己時間相関をモデル化するグラフニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 44.34236994440102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and timely air quality and weather predictions are of great
importance to urban governance and human livelihood. Though many efforts have
been made for air quality or weather prediction, most of them simply employ one
another as feature input, which ignores the inner-connection between two
predictive tasks. On the one hand, the accurate prediction of one task can help
improve another task's performance. On the other hand, geospatially distributed
air quality and weather monitoring stations provide additional hints for
city-wide spatiotemporal dependency modeling. Inspired by the above two
insights, in this paper, we propose the Multi-adversarial spatiotemporal
recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather
predictions. Specifically, we first propose a heterogeneous recurrent graph
neural network to model the spatiotemporal autocorrelation among air quality
and weather monitoring stations. Then, we develop a multi-adversarial graph
learning framework to against observation noise propagation introduced by
spatiotemporal modeling. Moreover, we present an adaptive training strategy by
formulating multi-adversarial learning as a multi-task learning problem.
Finally, extensive experiments on two real-world datasets show that MasterGNN
achieves the best performance compared with seven baselines on both air quality
and weather prediction tasks.
- Abstract(参考訳): 正確な空気質と天気予報は、都市の統治と人間の生活にとって非常に重要である。
空気の質や天気予報には多くの努力がなされているが、ほとんどは単に機能入力として互いに使用しており、2つの予測タスク間の内部接続を無視している。
一方、あるタスクの正確な予測は、別のタスクのパフォーマンスを改善するのに役立つ。
一方、地理的に分布する大気質と気象観測局は、都市全体の時空間依存モデリングのヒントを提供する。
本稿では,この2つの知見に触発されて,共同空気質と天気予報のための多変数時空間連続グラフニューラルネットワーク(MasterGNN)を提案する。
具体的には,大気品質と気象観測局間の時空間自己相関をモデル化する不均質なリカレントグラフニューラルネットワークを提案する。
そこで我々は,時空間モデルによる観測雑音の伝搬に対する多変数グラフ学習フレームワークを開発した。
さらに,マルチタスク学習をマルチタスク学習問題として定式化し,適応的学習戦略を提案する。
最後に、2つの実世界のデータセットに関する広範な実験により、MasterGNNは大気質と天気予報のタスクの7つのベースラインと比較して、最高のパフォーマンスを達成することが示された。
関連論文リスト
- AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
本稿では,空気質予測のための物理誘導ニューラルネットワーク(AirPhyNet)という新しいアプローチを提案する。
我々は、空気粒子移動(拡散と対流)の2つの確立された物理原理を微分方程式ネットワークとして表現することで活用する。
2つの実世界のベンチマークデータセットの実験では、AirPhyNetがさまざまなテストシナリオの最先端モデルを上回っていることが示されている。
論文 参考訳(メタデータ) (2024-02-06T07:55:54Z) - VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Netは、マルチモーダルデータを利用してスパース時間気象予報をより良く扱うためのGCN法を導入する最初の試みである。
VN-Netは、温度、相対湿度、予測のための平均絶対誤差(MAE)と根平均二乗誤差(RMSE)にかなりの差で最先端である。
論文 参考訳(メタデータ) (2024-01-26T12:41:57Z) - SAMSGL: Series-Aligned Multi-Scale Graph Learning for Spatio-Temporal Forecasting [9.013416216828361]
予測性能の向上を目的としたSGL(Series-Aligned Multi-Scale Graph Learning)フレームワークを提案する。
本研究では,非遅延グラフ信号の集約を容易にする一連のグラフ層を提案する。
気象・交通予測データセットについて実験を行い,その有効性と優越性を実証した。
論文 参考訳(メタデータ) (2023-12-05T10:37:54Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Residual Diffusion Modeling for Km-scale Atmospheric Downscaling [51.061954281398116]
台湾上空2kmの高解像度気象モデルを用いて,コスト効率の低いダウンスケーリングモデルを訓練した。
textitCorrDiffは、RMSEとCRPSを巧みに表現し、極端な場合でもスペクトルと分布を忠実に回復する。
グローバルな予測のスケールダウンは、これらのメリットの多くを成功裏に維持し、マシンラーニングの天気予報のエンドツーエンドなグローバルなスケールの可能性を先導する。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather
Forecasting [13.317147032467306]
複数の局における気象変数間の時間的相互相関をモデル化するためのグラフ階層時空間ニューラルネットワーク(HiSTGNN)を提案する。
3つの実世界の気象データセットの実験結果は、HiSTGNNが7つの基準線を超える優れた性能を示した。
特に最先端の天気予報法と比較して誤差を4.2%から11.6%に減らす。
論文 参考訳(メタデータ) (2022-01-22T17:30:46Z) - Deep multi-stations weather forecasting: explainable recurrent
convolutional neural networks [4.213427823201119]
モデルに自己注意を加えることで、全体の予測性能が向上することを示す。
本稿では,ヨーロッパ18都市の日次収集データから天気予報を行うため,異なる2つのディープラーニングアーキテクチャを比較した。
論文 参考訳(メタデータ) (2020-09-23T16:22:25Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。