論文の概要: WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning
- arxiv url: http://arxiv.org/abs/2411.05420v1
- Date: Fri, 08 Nov 2024 09:14:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:56:00.871697
- Title: WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning
- Title(参考訳): WeatherGFM: コンテキスト内学習による天気ジェネリスト基礎モデル学習
- Authors: Xiangyu Zhao, Zhiwang Zhou, Wenlong Zhang, Yihao Liu, Xiangyu Chen, Junchao Gong, Hao Chen, Ben Fei, Shiqi Chen, Wanli Ouyang, Xiao-Ming Wu, Lei Bai,
- Abstract要約: 第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
- 参考スコア(独自算出の注目度): 69.82211470647349
- License:
- Abstract: The Earth's weather system encompasses intricate weather data modalities and diverse weather understanding tasks, which hold significant value to human life. Existing data-driven models focus on single weather understanding tasks (e.g., weather forecasting). Although these models have achieved promising results, they fail to tackle various complex tasks within a single and unified model. Moreover, the paradigm that relies on limited real observations for a single scenario hinders the model's performance upper bound. In response to these limitations, we draw inspiration from the in-context learning paradigm employed in state-of-the-art visual foundation models and large language models. In this paper, we introduce the first generalist weather foundation model (WeatherGFM), designed to address a wide spectrum of weather understanding tasks in a unified manner. More specifically, we initially unify the representation and definition of the diverse weather understanding tasks. Subsequently, we devised weather prompt formats to manage different weather data modalities, namely single, multiple, and temporal modalities. Finally, we adopt a visual prompting question-answering paradigm for the training of unified weather understanding tasks. Extensive experiments indicate that our WeatherGFM can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing. Our method also showcases generalization ability on unseen tasks.
- Abstract(参考訳): 地球の気象システムには、複雑な気象データモダリティと多様な気象理解タスクが含まれており、これは人間の生活に重要な意味を持つ。
既存のデータ駆動モデルは、単一の天気予報タスク(天気予報など)に焦点を当てている。
これらのモデルは有望な結果を得たが、単一の統一されたモデル内の様々な複雑なタスクに対処できなかった。
さらに、単一のシナリオに対する限られた実観測に依存するパラダイムは、モデルの性能上界を妨げます。
これらの制約に応えて、最先端のビジュアル基盤モデルや大規模言語モデルで使用されるコンテキスト内学習パラダイムからインスピレーションを得る。
本稿では、気象理解タスクの幅広い範囲を統一的に扱うために設計された、最初の一般天気基礎モデル(WeatherGFM)を紹介する。
具体的には、まず最初に、多様な気象理解タスクの表現と定義を統一する。
その後、気象データモダリティ、すなわち、単一、複数、時間的モダリティを管理するための気象プロンプトフォーマットを考案した。
最後に、統合した気象理解タスクの訓練に視覚的質問応答パラダイムを採用する。
我々のWeatherGFMは、天気予報、超解像、気象画像の翻訳、後処理を含む10の気象理解タスクを効果的に処理できることを示している。
また,本手法は未確認タスクの一般化能力を示す。
関連論文リスト
- WeatherQA: Can Multimodal Language Models Reason about Severe Weather? [45.43764278625153]
干し草、竜巻、雷雨などの激しい対流的な気象イベントは、しばしば急速に起こるが、大きな被害を招き、毎年何十億ドルもの費用がかかる。
このことは、気象学者や住民のリスクの高い地域での適切な準備のために、前もって厳しい天候の脅威を予知することの重要性を強調している。
我々は、気象パラメータの複雑な組み合わせを推論し、現実のシナリオで厳しい天候を予測するために、機械用に設計された最初のマルチモーダルデータセットであるWeatherQAを紹介する。
論文 参考訳(メタデータ) (2024-06-17T05:23:18Z) - Modeling Weather Uncertainty for Multi-weather Co-Presence Estimation [25.060597623607784]
既存のアルゴリズムでは、気象条件を個別の状態としてモデル化し、マルチラベル分類を用いて推定する。
マルチウェザー条件の物理的定式化を考慮し,物理パラメータが画像の外観から学習に与える影響をモデル化する。
論文 参考訳(メタデータ) (2024-03-29T10:05:29Z) - Continual All-in-One Adverse Weather Removal with Knowledge Replay on a
Unified Network Structure [92.8834309803903]
現実の応用では、悪天候による画像の劣化は常に複雑で、日や季節によって異なる気象条件で変化する。
我々は,ネットワーク構造を統一した上で,効果的な知識再生(KR)を実現するための新しい連続学習フレームワークを開発した。
連続学習における複数の退化を伴う画像復元作業の特徴を考察し、異なる退化に関する知識を共有・蓄積することができる。
論文 参考訳(メタデータ) (2024-03-12T03:50:57Z) - WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions [42.99525455786019]
カリキュラムのコントラスト学習による自己教師付き頑健な深度推定モデルであるWeatherDepthを提案する。
提案手法は様々なアーキテクチャに容易に組み込めることが証明され、合成および実際の気象データセット上での最先端(SoTA)性能を示す。
論文 参考訳(メタデータ) (2023-10-09T09:26:27Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
ネットワークが異なる気象条件を適応的に処理できるようにするために,CLIP埋め込みモジュールを提案する。
このモジュールは、CLIP画像エンコーダによって抽出されたサンプル特定気象と、パラメータセットによって学習された分布特定情報を統合する。
論文 参考訳(メタデータ) (2023-06-15T10:06:13Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Weather GAN: Multi-Domain Weather Translation Using Generative
Adversarial Networks [76.64158017926381]
新しいタスク、すなわち、あるカテゴリから別のカテゴリに画像の気象条件を転送することを指す天気翻訳が提案されています。
ジェネレーション・アドバーサリー・ネットワーク(GAN)に基づくマルチドメインの気象翻訳手法を開発しています。
本手法は, 気象翻訳による歪みと変形を抑制する。
論文 参考訳(メタデータ) (2021-03-09T13:51:58Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。