SkiNet: A Deep Learning Solution for Skin Lesion Diagnosis with
Uncertainty Estimation and Explainability
- URL: http://arxiv.org/abs/2012.15049v1
- Date: Wed, 30 Dec 2020 05:39:57 GMT
- Title: SkiNet: A Deep Learning Solution for Skin Lesion Diagnosis with
Uncertainty Estimation and Explainability
- Authors: Rajeev Kumar Singh, Rohan Gorantla, Sai Giridhar Allada, Narra Pratap
- Abstract summary: SkiNet is a two-stage pipeline wherein the lesion segmentation is followed by the lesion classification.
The publicly available dataset, ISIC-2018, is used to perform experimentation and ablation studies.
- Score: 0.5735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer is considered to be the most common human malignancy. Around 5
million new cases of skin cancer are recorded in the United States annually.
Early identification and evaluation of skin lesions is of great clinical
significance, but the disproportionate dermatologist-patient ratio poses
significant problem in most developing nations. Therefore a deep learning based
architecture, known as SkiNet, is proposed with an objective to provide faster
screening solution and assistance to newly trained physicians in the clinical
diagnosis process. The main motive behind Skinet's design and development is to
provide a white box solution, addressing a critical problem of trust and
interpretability which is crucial for the wider adoption of Computer-aided
diagnosis systems by the medical practitioners. SkiNet is a two-stage pipeline
wherein the lesion segmentation is followed by the lesion classification. In
our SkiNet methodology, Monte Carlo dropout and test time augmentation
techniques have been employed to estimate epistemic and aleatoric uncertainty,
while saliency-based methods are explored to provide post-hoc explanations of
the deep learning models. The publicly available dataset, ISIC-2018, is used to
perform experimentation and ablation studies. The results establish the
robustness of the model on the traditional benchmarks while addressing the
black-box nature of such models to alleviate the skepticism of medical
practitioners by incorporating transparency and confidence to the model's
prediction.
Related papers
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
We propose a novel technique to improve melanoma recognition by an EfficientNet model.
The model trains the network to detect the lesion and learn features from the detected lesion.
Test results show that the proposed method improved diagnostic accuracy by increasing the mean area under receiver operating characteristic curve (mean AUC) score from 0.9 to 0.922.
arXiv Detail & Related papers (2023-05-16T15:34:12Z) - Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis [7.371818587876888]
This research focuses on a two step framework for skin lesion segmentation followed by classification for lesion analysis.
We explored the effectiveness of deep convolutional neural network based architectures by designing an encoder-decoder architecture for skin lesion segmentation and CNN based classification network.
Our cascaded end to end deep learning based approach is the first of its kind, where the classification accuracy of the lesion is significantly improved because of prior segmentation.
arXiv Detail & Related papers (2023-01-16T01:08:32Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - An Attention-based Weakly Supervised framework for Spitzoid Melanocytic
Lesion Diagnosis in WSI [1.0948946179065253]
Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer.
The gold standard for its diagnosis and prognosis is the analysis of skin biopsies.
We propose a novel end-to-end weakly-supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network (CNN)
The framework is composed of a source model in charge of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy.
arXiv Detail & Related papers (2021-04-20T10:18:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases.
We show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision.
arXiv Detail & Related papers (2021-01-26T23:37:30Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - On Interpretability of Deep Learning based Skin Lesion Classifiers using
Concept Activation Vectors [6.188009802619095]
We use a well-trained and high performing neural network for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis.
Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs)
arXiv Detail & Related papers (2020-05-05T08:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.