Fast Hyperspectral Image Recovery via Non-iterative Fusion of
Dual-Camera Compressive Hyperspectral Imaging
- URL: http://arxiv.org/abs/2012.15104v1
- Date: Wed, 30 Dec 2020 10:29:32 GMT
- Title: Fast Hyperspectral Image Recovery via Non-iterative Fusion of
Dual-Camera Compressive Hyperspectral Imaging
- Authors: Wei He, Naoto Yokoya, and Xin Yuan
- Abstract summary: Coded aperture snapshot spectral imaging (CASSI) is a promising technique to capture the three-dimensional hyperspectral image (HSI)
Various regularizers have been exploited to reconstruct the 3D data from the 2D measurement.
One feasible solution is to utilize additional information such as the RGB measurement in CASSI.
- Score: 22.683482662362337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coded aperture snapshot spectral imaging (CASSI) is a promising technique to
capture the three-dimensional hyperspectral image (HSI) using a single coded
two-dimensional (2D) measurement, in which algorithms are used to perform the
inverse problem. Due to the ill-posed nature, various regularizers have been
exploited to reconstruct the 3D data from the 2D measurement. Unfortunately,
the accuracy and computational complexity are unsatisfied. One feasible
solution is to utilize additional information such as the RGB measurement in
CASSI. Considering the combined CASSI and RGB measurement, in this paper, we
propose a new fusion model for the HSI reconstruction. We investigate the
spectral low-rank property of HSI composed of a spectral basis and spatial
coefficients. Specifically, the RGB measurement is utilized to estimate the
coefficients, meanwhile the CASSI measurement is adopted to provide the
orthogonal spectral basis. We further propose a patch processing strategy to
enhance the spectral low-rank property of HSI. The proposed model neither
requires non-local processing or iteration, nor the spectral sensing matrix of
the RGB detector. Extensive experiments on both simulated and real HSI dataset
demonstrate that our proposed method outperforms previous state-of-the-art not
only in quality but also speeds up the reconstruction more than 5000 times.
Related papers
- EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution [15.459253235077375]
Single hyperspectral image super-resolution (single-HSI-SR) aims to improve the resolution of a single input low-resolution HSI.
Due to the bottleneck of data scarcity, single-HSI-SR lags far behind that of RGB natural images.
We propose a new framework that first fine-tunes the pre-trained model with the spatial components, and then infers on unseen HSI using an iterative spectral regularization.
arXiv Detail & Related papers (2024-09-06T06:46:01Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - Residual Degradation Learning Unfolding Framework with Mixing Priors
across Spectral and Spatial for Compressive Spectral Imaging [29.135848304404533]
coded aperture snapshot spectral imaging (CASSI) is proposed.
core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement.
We propose a Residual Degradation Learning Unfolding Framework (RDLUF) which bridges the gap between the sensing matrix and the degradation process.
arXiv Detail & Related papers (2022-11-13T12:31:49Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3D hyperspectral image (HSI) reconstruction refers to inverse process of snapshot compressive imaging.
Proposal is for a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net.
We show that SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations.
arXiv Detail & Related papers (2021-08-17T16:20:51Z) - Deep-learning-based Hyperspectral imaging through a RGB camera [6.931572045689959]
Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection.
Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms.
In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI.
arXiv Detail & Related papers (2021-07-12T04:23:25Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.