Deep-learning-based Hyperspectral imaging through a RGB camera
- URL: http://arxiv.org/abs/2107.05190v1
- Date: Mon, 12 Jul 2021 04:23:25 GMT
- Title: Deep-learning-based Hyperspectral imaging through a RGB camera
- Authors: Xinyu Gao, Tianlang Wang, Jing Yang, Jinchao Tao, Yanqing Qiu, Yanlong
Meng, Banging Mao, Pengwei Zhou, and Yi Li
- Abstract summary: Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection.
Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms.
In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI.
- Score: 6.931572045689959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) contains both spatial pattern and spectral
information which has been widely used in food safety, remote sensing, and
medical detection. However, the acquisition of hyperspectral images is usually
costly due to the complicated apparatus for the acquisition of optical
spectrum. Recently, it has been reported that HSI can be reconstructed from
single RGB image using convolution neural network (CNN) algorithms. Compared
with the traditional hyperspectral cameras, the method based on CNN algorithms
is simple, portable and low cost. In this study, we focused on the influence of
the RGB camera spectral sensitivity (CSS) on the HSI. A Xenon lamp incorporated
with a monochromator were used as the standard light source to calibrate the
CSS. And the experimental results show that the CSS plays a significant role in
the reconstruction accuracy of an HSI. In addition, we proposed a new HSI
reconstruction network where the dimensional structure of the original
hyperspectral datacube was modified by 3D matrix transpose to improve the
reconstruction accuracy.
Related papers
- Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product [0.0]
The goal of this study was to reconstruct hyperspectral images from RGB images through deep learning for agricultural applications.
The algorithm accurately reconstructed the hyperspectral images from RGB images, with the resulting spectra closely matching the ground-truth.
These findings highlight the potential of deep learning-based hyperspectral image reconstruction as a low-cost, efficient tool for various agricultural uses.
arXiv Detail & Related papers (2024-05-20T18:15:20Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - The Application of Convolutional Neural Networks for Tomographic
Reconstruction of Hyperspectral Images [0.0]
A novel method, utilizing convolutional neural networks (CNNs), is proposed to reconstruct hyperspectral cubes from computed imaging spectrometer (CTIS) images.
CNNs deliver higher precision and shorter reconstruction time than a standard expectation algorithm.
arXiv Detail & Related papers (2021-08-30T18:11:08Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Learning to Enhance Visual Quality via Hyperspectral Domain Mapping [8.365634649800658]
SpecNet computes spectral profile to estimate pixel-wise dynamic range adjustment of a given image.
We incorporate a self-supervision and a spectral profile regularization network to infer a plausible HSI from an RGB image.
arXiv Detail & Related papers (2021-02-10T13:27:34Z) - Fast Hyperspectral Image Recovery via Non-iterative Fusion of
Dual-Camera Compressive Hyperspectral Imaging [22.683482662362337]
Coded aperture snapshot spectral imaging (CASSI) is a promising technique to capture the three-dimensional hyperspectral image (HSI)
Various regularizers have been exploited to reconstruct the 3D data from the 2D measurement.
One feasible solution is to utilize additional information such as the RGB measurement in CASSI.
arXiv Detail & Related papers (2020-12-30T10:29:32Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.