Web Routineness and Limits of Predictability: Investigating Demographic
and Behavioral Differences Using Web Tracking Data
- URL: http://arxiv.org/abs/2012.15112v1
- Date: Wed, 30 Dec 2020 11:19:10 GMT
- Title: Web Routineness and Limits of Predictability: Investigating Demographic
and Behavioral Differences Using Web Tracking Data
- Authors: Juhi Kulshrestha, Marcos Oliveira, Orkut Karacalik, Denis Bonnay,
Claudia Wagner
- Abstract summary: We show that people tend to follow routines on the Web, and these repetitive patterns of web visits increase their browsing behavior's achievable predictability.
We present an information-theoretic framework for measuring the uncertainty and theoretical limits of predictability of human mobility on the Web.
- Score: 0.24499092754102877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding human activities and movements on the Web is not only important
for computational social scientists but can also offer valuable guidance for
the design of online systems for recommendations, caching, advertising, and
personalization. In this work, we demonstrate that people tend to follow
routines on the Web, and these repetitive patterns of web visits increase their
browsing behavior's achievable predictability. We present an
information-theoretic framework for measuring the uncertainty and theoretical
limits of predictability of human mobility on the Web. We systematically assess
the impact of different design decisions on the measurement. We apply the
framework to a web tracking dataset of German internet users. Our empirical
results highlight that individual's routines on the Web make their browsing
behavior predictable to 85% on average, though the value varies across
individuals. We observe that these differences in the users' predictabilities
can be explained to some extent by their demographic and behavioral attributes.
Related papers
- Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - SMEMO: Social Memory for Trajectory Forecasting [34.542209630734234]
We present a neural network based on an end-to-end trainable working memory, which acts as an external storage.
We show that our method is capable of learning explainable cause-effect relationships between motions of different agents, obtaining state-of-the-art results on trajectory forecasting datasets.
arXiv Detail & Related papers (2022-03-23T14:40:20Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
We develop generalizable neural representation learning frameworks for user behavior modeling.
Our problem settings span transductive and inductive learning scenarios.
We leverage different facets of information reflecting user behavior to enable personalized inference at scale.
arXiv Detail & Related papers (2022-02-28T00:27:11Z) - User Interaction Analysis through Contrasting Websites Experience [4.14955672190455]
We perform the quantitative analysis the usability of websites based on their usage and relevance.
We do this by reporting user interactions based user subjective perceptions, eye-tracking data and facial expressions.
In general, we found that the user interaction parameters are substantially difference across website sets.
arXiv Detail & Related papers (2022-01-10T20:43:19Z) - How we browse: Measurement and analysis of digital behavior [25.760665908194888]
We collect data from 31 participants continuously for 14 days and self-reported browsing patterns.
We find significant differences in level of activity based on user age, but not based on race or gender.
Users significantly overestimate the time they spend online, but have relatively accurate perceptions of how they spend their time online.
arXiv Detail & Related papers (2021-08-15T14:08:30Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - Jointly Predicting Job Performance, Personality, Cognitive Ability,
Affect, and Well-Being [42.67003631848889]
We create a benchmark for predictive analysis of individuals from a perspective that integrates physical and physiological behavior, psychological states and traits, and job performance.
We design data mining techniques as benchmark and uses real noisy and incomplete data derived from wearable sensors to predict 19 constructs based on 12 standardized well-validated tests.
arXiv Detail & Related papers (2020-06-10T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.