Dynamical quantum Cherenkov transition of fast impurities in quantum
liquids
- URL: http://arxiv.org/abs/2101.00030v2
- Date: Mon, 1 Nov 2021 17:23:42 GMT
- Title: Dynamical quantum Cherenkov transition of fast impurities in quantum
liquids
- Authors: Kushal Seetharam, Yulia Shchadilova, Fabian Grusdt, Mikhail B.
Zvonarev, Eugene Demler
- Abstract summary: We investigate the motion of a finite mass impurity injected into a quantum Bose fluid.
We uncover a transition in the dynamics as the impurity's velocity crosses a critical value.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The challenge of understanding the dynamics of a mobile impurity in an
interacting quantum many-body medium comes from the necessity of including
entanglement between the impurity and excited states of the environment in a
wide range of energy scales. In this paper, we investigate the motion of a
finite mass impurity injected into a three-dimensional quantum Bose fluid as it
starts shedding Bogoliubov excitations. We uncover a transition in the dynamics
as the impurity's velocity crosses a critical value which depends on the
strength of the interaction between the impurity and bosons as well as the
impurity's recoil energy. We find that in injection experiments, the two
regimes differ not only in the character of the impurity velocity abatement,
but also exhibit qualitative differences in the Loschmidt echo, density ripples
excited in the BEC, and momentum distribution of scattered bosonic particles.
The transition is a manifestation of a dynamical quantum Cherenkov effect, and
should be experimentally observable with ultracold atoms using Ramsey
interferometry, RF spectroscopy, absorption imaging, and time-of-flight
imaging.
Related papers
- Static impurity in a mesoscopic system of SU($N$) fermionic matter-waves [0.0]
We show that the impurity opens a gap in the energy spectrum selectively, constrained by the total effective spin and interaction.
Our findings hold significance for the fundamental understanding of the localized impurity problem and its potential applications for sensing and interferometry in quantum technology.
arXiv Detail & Related papers (2024-11-21T19:25:14Z) - Superdiffusion of vortices in two-component quantum fluids of light [0.0]
Kerr nonlinearity promotes interactions between the photons, displaying features that are analogue of a Bose-Einstein condensates.
We numerically solve the problem by simulating a vortex-like impurity in the presence of noise.
We support our results with a theory that has been previously developed for the brownian motion of point-like particles.
arXiv Detail & Related papers (2023-12-11T12:04:40Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Dynamics of polaron formation in 1D Bose gases in the strong-coupling
regime [0.0]
We discuss the dynamics of the formation of a Bose polaron when an impurity is injected into a weakly interacting Bose condensate.
We use Truncated Wigner simulations to show under what conditions the influence of quantum fluctuations is small.
arXiv Detail & Related papers (2023-04-27T19:55:18Z) - Quantum Cherenkov transition of finite momentum Bose polarons [0.0]
We investigate the behavior of a finite-momentum impurity immersed in a weakly interacting Bose-Einstein condensate (BEC) of ultra-cold atoms.
We identify a transition in the far-from-equilibrium dynamics of the system after the attractive short-range impurity-boson interaction is quenched on.
The transition should be experimentally observable via a variety of common protocols in ultracold atomic systems.
arXiv Detail & Related papers (2021-09-25T02:02:32Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities [0.0]
We study a circularly moving impurity in an atomic condensate for realisation of superradiance phenomena in tabletop experiments.
For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector.
arXiv Detail & Related papers (2020-01-23T16:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.