論文の概要: Towards Modelling Coherence in Spoken Discourse
- arxiv url: http://arxiv.org/abs/2101.00056v1
- Date: Thu, 31 Dec 2020 20:18:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 19:20:21.366878
- Title: Towards Modelling Coherence in Spoken Discourse
- Title(参考訳): 話し言葉におけるコヒーレンスモデリングに向けて
- Authors: Rajaswa Patil, Yaman Kumar Singla, Rajiv Ratn Shah, Mika Hama and
Roger Zimmermann
- Abstract要約: 話し言葉におけるコヒーレンスは、音声の韻律的および音響的パターンに依存している。
音声に基づくコヒーレンスモデルを用いて音声対話におけるコヒーレンスをモデル化する。
- 参考スコア(独自算出の注目度): 48.80477600384429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there has been significant progress towards modelling coherence in
written discourse, the work in modelling spoken discourse coherence has been
quite limited. Unlike the coherence in text, coherence in spoken discourse is
also dependent on the prosodic and acoustic patterns in speech. In this paper,
we model coherence in spoken discourse with audio-based coherence models. We
perform experiments with four coherence-related tasks with spoken discourses.
In our experiments, we evaluate machine-generated speech against the speech
delivered by expert human speakers. We also compare the spoken discourses
generated by human language learners of varying language proficiency levels.
Our results show that incorporating the audio modality along with the text
benefits the coherence models in performing downstream coherence related tasks
with spoken discourses.
- Abstract(参考訳): 文言のコヒーレンスをモデル化する作業には大きな進展があったが、話し言葉コヒーレンスをモデル化する作業は限られている。
テキストのコヒーレンスとは異なり、話し言葉におけるコヒーレンスは、音声の韻律的および音響的パターンにも依存する。
本稿では,音声に基づくコヒーレンスモデルを用いた音声談話におけるコヒーレンスをモデル化する。
4つのコヒーレンス関連タスクと話し言葉による実験を行った。
実験では,専門家による音声に対する機械生成音声の評価を行った。
また,言語習熟度の異なる人間の言語学習者による音声談話も比較した。
その結果,テキストに音声モダリティを組み込むことで,下流のコヒーレンス関連タスクと話し言葉のコヒーレンスモデルが有効であることがわかった。
関連論文リスト
- SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
本稿では,認知にインスパイアされた音声指導モデルであるSIFToMを提案し,多様な音声条件下でロボットが人間の指示を実践的に追従できるようにする。
結果から,SIFToMモデルは現状の音声モデルや言語モデルよりも優れており,課題に追従する音声命令に対する人間レベルの精度に近づいていることがわかった。
論文 参考訳(メタデータ) (2024-09-17T02:36:10Z) - Leveraging the Interplay Between Syntactic and Acoustic Cues for Optimizing Korean TTS Pause Formation [6.225927189801006]
本稿では,パジングパターンに関連する構文的手法と音響的手法の両方を包括的にモデル化する新しい枠組みを提案する。
注目に値することに、我々のフレームワークは、より拡張され複雑なドメイン外文(OOD)であっても、自然言語を一貫して生成する能力を持っている。
論文 参考訳(メタデータ) (2024-04-03T09:17:38Z) - Speech Rhythm-Based Speaker Embeddings Extraction from Phonemes and
Phoneme Duration for Multi-Speaker Speech Synthesis [16.497022070614236]
本稿では,ターゲット話者による発話数を用いて,音素長をモデル化するための音声リズムに基づく話者埋め込み手法を提案する。
提案手法の新たな特徴は、音素とその持続時間から抽出されたリズムに基づく埋め込みであり、発声リズムに関連することが知られている。
論文 参考訳(メタデータ) (2024-02-11T02:26:43Z) - EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models [25.683827726880594]
EmphAssessは,音声合成モデルの韻律強調を符号化し再現する能力を評価するためのベンチマークである。
音声合成と音声合成の2つの課題に適用する。
どちらの場合も、ベンチマークは、モデルが音声入力の強調を符号化し、出力で正確に再現する能力を評価する。
評価パイプラインの一部として、フレームや単語レベルで強調を分類する新しいモデルであるEmphaClassを紹介する。
論文 参考訳(メタデータ) (2023-12-21T17:47:33Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - FCTalker: Fine and Coarse Grained Context Modeling for Expressive
Conversational Speech Synthesis [75.74906149219817]
Conversational Text-to-Speech (TTS) は、会話の文脈において、適切な言語的・感情的な韻律で発話を合成することを目的としている。
本稿では, 音声生成時に, 微細で粗い文脈依存性を同時に学習する, FCTalkerと呼ばれる新しい表現型会話型TSモデルを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:20:20Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension [43.352833140317486]
マルチパーティ・マルチターン・ダイアログの理解は前例のない課題をもたらす。
既存のほとんどのメソッドは、会話コンテキストをプレーンテキストとして扱う。
マスキングアテンションと異種グラフネットワークを用いた話者認識モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T07:12:22Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。