論文の概要: Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network
- arxiv url: http://arxiv.org/abs/2101.00417v1
- Date: Sat, 2 Jan 2021 10:31:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 10:20:30.170061
- Title: Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network
- Title(参考訳): ランダムウォークグラフ畳み込みネットワークを用いた再構成グラフの表現学習
- Authors: Xing Li, Wei Wei, Xiangnan Feng, Zhiming Zheng
- Abstract要約: グラフのノード特異的なメソスコピック構造を得るためにランダムウォークを利用する新しいフレームワークであるwGCNを提案する。
高次局所構造情報を組み合わせることで、ネットワークの可能性をより効率的に探究できると信じている。
- 参考スコア(独自算出の注目度): 12.008472517000651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are often used to organize data because of their simple topological
structure, and therefore play a key role in machine learning. And it turns out
that the low-dimensional embedded representation obtained by graph
representation learning are extremely useful in various typical tasks, such as
node classification, content recommendation and link prediction. However, the
existing methods mostly start from the microstructure (i.e., the edges) in the
graph, ignoring the mesoscopic structure (high-order local structure). Here, we
propose wGCN -- a novel framework that utilizes random walk to obtain the
node-specific mesoscopic structures of the graph, and utilizes these mesoscopic
structures to reconstruct the graph And organize the characteristic information
of the nodes. Our method can effectively generate node embeddings for
previously unseen data, which has been proven in a series of experiments
conducted on citation networks and social networks (our method has advantages
over baseline methods). We believe that combining high-order local structural
information can more efficiently explore the potential of the network, which
will greatly improve the learning efficiency of graph neural network and
promote the establishment of new learning models.
- Abstract(参考訳): グラフは単純なトポロジ構造のため、しばしばデータを整理するために使われ、機械学習において重要な役割を果たす。
また,グラフ表現学習によって得られる低次元埋め込み表現は,ノード分類,コンテンツ推薦,リンク予測など,様々な典型的なタスクにおいて極めて有用であることがわかった。
しかし、既存の手法は主にグラフのミクロ構造(すなわちエッジ)から始まり、メソスコピック構造(高次局所構造)を無視している。
本稿では,ランダムウォークをグラフのノード固有のメソスコピック構造に利用し,これらのメソピック構造を用いてグラフを再構築し,ノードの特性情報を整理する新しい枠組みであるwgcnを提案する。
提案手法は,引用ネットワークとソーシャルネットワークで実施した一連の実験で証明された,従来未発見のデータに対するノード埋め込みを効果的に生成することができる(本手法はベースライン手法よりも優れている)。
高次局所構造情報を組み合わせることで、ニューラルネットワークの学習効率を大幅に向上し、新しい学習モデルの確立を促進するネットワークの可能性をより効率的に探求できると信じている。
関連論文リスト
- GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Edge-Featured Graph Attention Network [7.0629162428807115]
エッジ機能付きグラフアテンションネットワーク(EGAT)を提案し、グラフニューラルネットワークの利用をノードとエッジの両方の特徴を持つグラフ上で学習するタスクに拡張する。
モデル構造と学習プロセスを改革することにより、新しいモデルはノードとエッジの機能を入力として受け入れ、エッジ情報を機能表現に組み込むことができ、ノードとエッジの機能を並列かつ相互に反復することができる。
論文 参考訳(メタデータ) (2021-01-19T15:08:12Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
我々は,多層グラフカーネルのファミリーを導入し,グラフ畳み込みニューラルネットワークとカーネルメソッドの新たなリンクを確立する。
提案手法は,グラフをカーネル特徴写像の列として表現することにより,畳み込みカーネルネットワークをグラフ構造データに一般化する。
我々のモデルは、大規模データに対してエンドツーエンドでトレーニングすることもでき、新しいタイプのグラフ畳み込みニューラルネットワークをもたらす。
論文 参考訳(メタデータ) (2020-03-11T09:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。