Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach
- URL: http://arxiv.org/abs/2204.06390v1
- Date: Wed, 13 Apr 2022 13:52:22 GMT
- Title: Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach
- Authors: Xinyu Gao, Wenqiang Yi, Alexandros Agapitos, Hao Wang, and Yuanwei Liu
- Abstract summary: A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
- Score: 102.00221938474344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coverage and capacity are the important metrics for performance evaluation in
wireless networks, while the coverage and capacity have several conflicting
relationships, e.g. high transmit power contributes to large coverage but high
inter-cell interference reduces the capacity performance. Therefore, in order
to strike a balance between the coverage and capacity, a novel model is
proposed for the coverage and capacity optimization of simultaneously
transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs)
assisted networks. To solve the coverage and capacity optimization (CCO)
problem, a machine learning-based multi-objective optimization algorithm, i.e.,
the multi-objective proximal policy optimization (MO-PPO) algorithm, is
proposed. In this algorithm, a loss function-based update strategy is the core
point, which is able to calculate weights for both loss functions of coverage
and capacity by a min-norm solver at each update. The numerical results
demonstrate that the investigated update strategy outperforms the fixed
weight-based MO algorithms.
Related papers
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
A new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging.
To solve the coverage and capacity optimization problem in STAR-RIS assisted networks, a multi-objective policy optimization (MO-PPO) algorithm is proposed.
In order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS) are investigated.
arXiv Detail & Related papers (2022-09-01T14:54:36Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
Cooperative beamforming across points (APs) and fronthaulization strategies are essential for cloud radio network (C-RAN) systems.
Non-dimensional quantity problem is stemmed from per-AP power and fronthaul capacity constraints.
We investigate a deep learning optimization module is where well-trained deep neural network (DNN)
Numerical results validate the advantages of the proposed learning solution.
arXiv Detail & Related papers (2021-07-06T10:27:43Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.