論文の概要: Attentive Tree-structured Network for Monotonicity Reasoning
- arxiv url: http://arxiv.org/abs/2101.00540v1
- Date: Sun, 3 Jan 2021 01:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 06:15:10.383518
- Title: Attentive Tree-structured Network for Monotonicity Reasoning
- Title(参考訳): 単調性推論のための注意木構造ネットワーク
- Authors: Zeming Chen
- Abstract要約: 単調性推論のための木構造ニューラルネットワークを開発した。
推論タスクの文対から構文解析木情報をモデル化するように設計されている。
前提と仮説の表現を整列するために、自己注意集約器が使用される。
- 参考スコア(独自算出の注目度): 2.4366811507669124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many state-of-art neural models designed for monotonicity reasoning perform
poorly on downward inference. To address this shortcoming, we developed an
attentive tree-structured neural network. It consists of a tree-based
long-short-term-memory network (Tree-LSTM) with soft attention. It is designed
to model the syntactic parse tree information from the sentence pair of a
reasoning task. A self-attentive aggregator is used for aligning the
representations of the premise and the hypothesis. We present our model and
evaluate it using the Monotonicity Entailment Dataset (MED). We show and
attempt to explain that our model outperforms existing models on MED.
- Abstract(参考訳): 単調性推論のために設計された多くの最先端のニューラルモデルは、下向きの推論では不十分である。
この欠点に対処するため、注意深い木構造ニューラルネットワークを開発した。
ツリーベースの長期記憶ネットワーク(Tree-LSTM)をソフトアテンションで構成する。
推論タスクの文対から構文解析木情報をモデル化するように設計されている。
前提と仮説の表現を整列するために、自己注意集約器が使用される。
本稿では,モノトニティ・エンタテリメント・データセット(MED)を用いて,そのモデルを示し,評価する。
モデルが既存のモデルより優れていることを説明し、説明しようとします。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
畳み込みニューラルネットワーク(CNN)の忠実かつ解釈可能な説明に階層的セグメンテーション技術を用いるフレームワークを導入する。
本手法はモデルの推論忠実性を維持するモデルに基づく階層的セグメンテーションを構築する。
実験により、我々のフレームワークであるxAiTreesが高度に解釈可能で忠実なモデル説明を提供することが示された。
論文 参考訳(メタデータ) (2024-06-19T06:45:19Z) - On the Origin of Llamas: Model Tree Heritage Recovery [39.08927346274156]
本稿では,ニューラルネットワークにおけるモデルツリー発見のためのモデルツリー復元(MoTHer Recovery)の課題を紹介する。
我々の仮説では、モデルウェイトがこの情報を符号化し、ウェイトを考慮すれば、基盤となるツリー構造をデコードすることが課題である。
MoTHerリカバリは、検索エンジンによるインターネットのインデックス化に似た、エキサイティングな長期的アプリケーションを提供する。
論文 参考訳(メタデータ) (2024-05-28T17:59:51Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
本稿では、概念に基づく説明書から抽出した概念に基づいて決定木を訓練することで、畳み込みニューラルネットワーク(CNN)モデルの解釈可能性を高めることができるかどうかを評価する。
論文 参考訳(メタデータ) (2022-11-19T21:42:55Z) - Learning compositional structures for semantic graph parsing [81.41592892863979]
本稿では、AM依存性解析をニューラル潜在変数モデルで直接トレーニングする方法を示す。
本モデルでは,いくつかの言語現象を独自に把握し,教師あり学習に匹敵する精度を達成している。
論文 参考訳(メタデータ) (2021-06-08T14:20:07Z) - Cracking the Black Box: Distilling Deep Sports Analytics [17.35421731343764]
本稿では,スポーツ分析に応用した深層学習における精度と透明性のトレードオフについて論じる。
我々は、元のディープラーニングモデルの出力を模倣し、学習した知識を明示的な解釈可能な方法で表現する、シンプルで透明なモデルを構築します。
論文 参考訳(メタデータ) (2020-06-04T01:49:36Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
我々はマルチタスクの目的、すなわち、モデルが単語を同時に予測し、また「シンタクティック距離」と呼ばれる形態で真実解析木を解析する。
Penn Treebank と Chinese Treebank のデータセットによる実験結果から,地上の真理解析木を追加の訓練信号として提供すると,そのモデルはより低いパープレキシティを実現し,より良い品質で木を誘導できることが示された。
論文 参考訳(メタデータ) (2020-05-12T15:35:00Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
NLVR2およびDROPデータセット上でNMNの中間出力を評価する。
中間出力は期待出力と異なり,ネットワーク構造がモデル動作の忠実な説明を提供していないことを示す。
論文 参考訳(メタデータ) (2020-05-02T06:50:35Z) - Multi-Step Inference for Reasoning Over Paragraphs [95.91527524872832]
テキスト上の複雑な推論には、自由形式の述語と論理的な連結体を理解し、連鎖する必要がある。
本稿では,ニューラルネットワークを連想させる構成モデルを提案する。
論文 参考訳(メタデータ) (2020-04-06T21:12:53Z) - Linguistically Driven Graph Capsule Network for Visual Question
Reasoning [153.76012414126643]
我々は「言語的に駆動されるグラフカプセルネットワーク」と呼ばれる階層的構成推論モデルを提案する。
具体的には,各カプセルを最下層に結合させ,元の質問に1つの単語を埋め込んだ言語的埋め込みを視覚的証拠で橋渡しする。
CLEVRデータセット、CLEVR合成生成テスト、およびFinalQAデータセットの実験は、我々のエンドツーエンドモデルの有効性と構成一般化能力を示す。
論文 参考訳(メタデータ) (2020-03-23T03:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。