Capacities of Gaussian Quantum Channels with Passive Environment
Assistance
- URL: http://arxiv.org/abs/2101.00602v1
- Date: Sun, 3 Jan 2021 10:33:43 GMT
- Title: Capacities of Gaussian Quantum Channels with Passive Environment
Assistance
- Authors: Samad Khabbazi Oskouei, Stefano Mancini and Andreas Winter
- Abstract summary: Passive environment assisted communication takes place via a quantum channel modeled as a unitary interaction between the information carrying system and an environment.
We consider both quantum communication and classical communication with helper, as well as classical communication with free classical coordination between sender and helper.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Passive environment assisted communication takes place via a quantum channel
modeled as a unitary interaction between the information carrying system and an
environment, where the latter is controlled by a passive helper, who can set
its initial state such as to assist sender and receiver, but not help actively
by adjusting her behaviour depending on the message. Here we investigate the
information transmission capabilities in this framework by considering Gaussian
unitaries acting on Bosonic systems.
We consider both quantum communication and classical communication with
helper, as well as classical communication with free classical coordination
between sender and helper (conferencing encoders).
Concerning quantum communication, we prove general coding theorems with and
without energy constraints, yielding multi-letter (regularized) expressions.
In the search for cases where the capacity formula is computable, we look for
Gaussian unitaries that are universally degradable or anti-degradable. However,
we show that no Gaussian unitary yields either a degradable or anti-degradable
channel for all environment states. On the other hand, restricting to Gaussian
environment states, results in universally degradable unitaries, for which we
thus can give single-letter quantum capacity formulas.
Concerning classical communication, we prove a general coding theorem for the
classical capacity under and energy constraint, given by a multi-letter
expression. Furthermore, we derive an uncertainty-type relation between the
classical capacities of the sender and the helper, helped respectively by the
other party, showing a lower bound on the sum of the two capacities. Then, this
is used to lower bound the classical information transmission rate in the
scenario of classical communication between sender and helper.
Related papers
- Fully quantum arbitrarily varying channel coding for entanglement-assisted communication [0.0]
We study the problem of entanglement-assisted capacity in the presence of system uncertainty.
We find that, under the assumption of a finite environment dimension, it is equal to a corresponding compound capacity.
Our results imply that in certain fully quantum arbitrarily varying channel models, the entanglement-assisted capacity can be positive while the classical capacity is equal to zero.
arXiv Detail & Related papers (2024-04-12T02:10:04Z) - Communication Complexity of Common Randomness Generation with Isotropic
States [5.312109949216557]
The paper considers two communication models -- one-way classical communication and one-way quantum communication.
We show that in the case of classical communication, quantum isotropic states have no advantage over noisy classical correlation.
In the case of quantum communication, we demonstrate that the common randomness rate can be increased by using superdense coding on quantum isotropic states.
arXiv Detail & Related papers (2023-11-08T14:48:15Z) - The Multiple-Access Channel with Entangled Transmitters [67.92544792239086]
Communication over a classical multiple-access channel (MAC) with entanglement resources is considered.
We establish inner and outer bounds on the capacity region for the general MAC with entangled transmitters.
Using superdense coding, entanglement can double the conferencing rate.
arXiv Detail & Related papers (2023-03-18T16:51:08Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
arXiv Detail & Related papers (2022-02-14T15:29:59Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Entanglement-Assisted Communication Surpassing the Ultimate Classical
Capacity [2.8453697351728438]
Entanglement-assisted communication (EACOMM) leverages entanglement pre-shared by communication parties to boost the rate of classical information transmission.
We show that EACOMM beats the Holevo-Schumacher-Westmoreland capacity of classical communication by up to 14.6%.
Our work opens a route to provable quantum advantages in a wide range of quantum information processing tasks.
arXiv Detail & Related papers (2021-01-19T06:41:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Permutation Enhances Classical Communication Assisted by Entangled
States [67.12391801199688]
We show that the capacity satisfies the strong converse property and thus the formula serves as a sharp dividing line between achievable and unachievable rates of communication.
As examples, we derive analytically the classical capacity of various quantum channels of interests.
arXiv Detail & Related papers (2020-01-07T01:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.