Entanglement-Assisted Communication Surpassing the Ultimate Classical
Capacity
- URL: http://arxiv.org/abs/2101.07482v1
- Date: Tue, 19 Jan 2021 06:41:09 GMT
- Title: Entanglement-Assisted Communication Surpassing the Ultimate Classical
Capacity
- Authors: Shuhong Hao, Haowei Shi, Wei Li, Quntao Zhuang, Zheshen Zhang
- Abstract summary: Entanglement-assisted communication (EACOMM) leverages entanglement pre-shared by communication parties to boost the rate of classical information transmission.
We show that EACOMM beats the Holevo-Schumacher-Westmoreland capacity of classical communication by up to 14.6%.
Our work opens a route to provable quantum advantages in a wide range of quantum information processing tasks.
- Score: 2.8453697351728438
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Entanglement underpins a variety of quantum-enhanced communication, sensing,
and computing capabilities. Entanglement-assisted communication (EACOMM)
leverages entanglement pre-shared by communication parties to boost the rate of
classical information transmission. Pioneering theory works showed that EACOMM
can enable a communication rate well beyond the ultimate classical capacity of
optical communications, but an experimental demonstration of any EACOMM
advantage remains elusive. Here, we report the implementation of EACOMM
surpassing the classical capacity over lossy and noisy bosonic channels. We
construct a high-efficiency entanglement source and a phase-conjugate quantum
receiver to reap the benefit of pre-shared entanglement, despite entanglement
being broken by channel loss and noise. We show that EACOMM beats the
Holevo-Schumacher-Westmoreland capacity of classical communication by up to
14.6%, when both protocols are subject to the same power constraint at the
transmitter. As a practical performance benchmark, a classical communication
protocol without entanglement assistance is implemented, showing that EACOMM
can reduce the bit-error rate by up to 69% over the same bosonic channel. Our
work opens a route to provable quantum advantages in a wide range of quantum
information processing tasks.
Related papers
- eQMARL: Entangled Quantum Multi-Agent Reinforcement Learning for Distributed Cooperation over Quantum Channels [98.314893665023]
Quantum computing has sparked a potential synergy between quantum entanglement and cooperation in multi-agent environments.
Current state-of-the-art quantum MARL (QMARL) implementations rely on classical information sharing.
eQMARL is a distributed actor-critic framework that facilitates cooperation over a quantum channel.
arXiv Detail & Related papers (2024-05-24T18:43:05Z) - Quantum-Amplified Simultaneous Quantum-Classical Communications [0.2982610402087727]
We investigate how to minimally alter classical FSO systems to provide some element of quantum communication coexisting with classical communications.
We show how this is indeed the case, but only at the cost of some additional receiver complexity, relative to standalone quantum communications.
arXiv Detail & Related papers (2024-05-15T06:44:01Z) - The Multiple-Access Channel with Entangled Transmitters [67.92544792239086]
Communication over a classical multiple-access channel (MAC) with entanglement resources is considered.
We establish inner and outer bounds on the capacity region for the general MAC with entangled transmitters.
Using superdense coding, entanglement can double the conferencing rate.
arXiv Detail & Related papers (2023-03-18T16:51:08Z) - Learning Quantum Entanglement Distillation with Noisy Classical
Communications [39.000858564696856]
entanglement distillation aims to enhance the fidelity of entangled qubits through local operations and classical communication.
Existing distillation protocols assume the availability of ideal, noiseless, communication channels.
In this paper, we study the case in which communication takes place over noisy binary symmetric channels.
arXiv Detail & Related papers (2022-05-17T18:10:16Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
arXiv Detail & Related papers (2022-02-14T15:29:59Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Entanglement-assisted capacity regions and protocol designs for quantum
multiple-access channels [11.889059726526781]
entanglement-assisted (EA) classical capacity region of quantum multiple-access channels with an arbitrary number of senders.
Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed.
Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates.
arXiv Detail & Related papers (2021-01-28T18:27:50Z) - Capacities of Gaussian Quantum Channels with Passive Environment
Assistance [0.0]
Passive environment assisted communication takes place via a quantum channel modeled as a unitary interaction between the information carrying system and an environment.
We consider both quantum communication and classical communication with helper, as well as classical communication with free classical coordination between sender and helper.
arXiv Detail & Related papers (2021-01-03T10:33:43Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Permutation Enhances Classical Communication Assisted by Entangled
States [67.12391801199688]
We show that the capacity satisfies the strong converse property and thus the formula serves as a sharp dividing line between achievable and unachievable rates of communication.
As examples, we derive analytically the classical capacity of various quantum channels of interests.
arXiv Detail & Related papers (2020-01-07T01:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.