AttnMove: History Enhanced Trajectory Recovery via Attentional Network
- URL: http://arxiv.org/abs/2101.00646v1
- Date: Sun, 3 Jan 2021 15:45:35 GMT
- Title: AttnMove: History Enhanced Trajectory Recovery via Attentional Network
- Authors: Tong Xia and Yunhan Qi and Jie Feng and Fengli Xu and Funing Sun and
Diansheng Guo and Yong Li
- Abstract summary: We propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations.
We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods.
- Score: 15.685998183691655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A considerable amount of mobility data has been accumulated due to the
proliferation of location-based service. Nevertheless, compared with mobility
data from transportation systems like the GPS module in taxis, this kind of
data is commonly sparse in terms of individual trajectories in the sense that
users do not access mobile services and contribute their data all the time.
Consequently, the sparsity inevitably weakens the practical value of the data
even it has a high user penetration rate. To solve this problem, we propose a
novel attentional neural network-based model, named AttnMove, to densify
individual trajectories by recovering unobserved locations at a fine-grained
spatial-temporal resolution. To tackle the challenges posed by sparsity, we
design various intra- and inter- trajectory attention mechanisms to better
model the mobility regularity of users and fully exploit the periodical pattern
from long-term history. We evaluate our model on two real-world datasets, and
extensive results demonstrate the performance gain compared with the
state-of-the-art methods. This also shows that, by providing high-quality
mobility data, our model can benefit a variety of mobility-oriented down-stream
applications.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
Mobility profiling can extract potential patterns in urban traffic from mobility data.
Digital twin (DT) technology paves the way for cost-effective and performance-optimised management.
We propose a digital twin mobility profiling framework to learn node profiles on a mobilitytemporal network DT model.
arXiv Detail & Related papers (2024-02-06T06:37:43Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
We propose a socioeconomic-aware deep model called DeepSEI.
The DeepSEI model incorporates two networks called deep network and recurrent network.
We conduct extensive experiments on real mobility records data, POI data and house prices data.
arXiv Detail & Related papers (2022-11-15T15:07:45Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Generating synthetic mobility data for a realistic population with RNNs
to improve utility and privacy [3.3918638314432936]
We present a system for generating synthetic mobility data using a deep recurrent neural network (RNN)
The system takes a population distribution as input and generates mobility traces for a corresponding synthetic population.
We show the generated mobility data retain the characteristics of the real data, while varying from the real data at the individual level.
arXiv Detail & Related papers (2022-01-04T13:58:22Z) - Station-to-User Transfer Learning: Towards Explainable User Clustering
Through Latent Trip Signatures Using Tidal-Regularized Non-Negative Matrix
Factorization [4.713006935605146]
This work focuses on mobility data and how it will help improve our understanding of urban mobility patterns.
We propose a Collective Learning Framework through Latent Representation, which augments user-level learning with collective patterns learned from station-level signals.
We provide a qualitative analysis of the station functions and user profiles for the Washington D.C. metro and show how our method supports intra-city mobility exploration.
arXiv Detail & Related papers (2020-04-27T14:13:56Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
We propose an unsupervised neural approach for mobility behavior clustering, called Deep Embedded TrajEctor ClusTering network (DETECT)
DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality.
In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$means) to be applied.
arXiv Detail & Related papers (2020-03-03T06:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.