Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach
- URL: http://arxiv.org/abs/2402.03750v1
- Date: Tue, 6 Feb 2024 06:37:43 GMT
- Title: Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach
- Authors: Xin Chen, Mingliang Hou, Tao Tang, Achhardeep Kaur and Feng Xia
- Abstract summary: Mobility profiling can extract potential patterns in urban traffic from mobility data.
Digital twin (DT) technology paves the way for cost-effective and performance-optimised management.
We propose a digital twin mobility profiling framework to learn node profiles on a mobilitytemporal network DT model.
- Score: 9.56255685195115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the arrival of the big data era, mobility profiling has become a viable
method of utilizing enormous amounts of mobility data to create an intelligent
transportation system. Mobility profiling can extract potential patterns in
urban traffic from mobility data and is critical for a variety of
traffic-related applications. However, due to the high level of complexity and
the huge amount of data, mobility profiling faces huge challenges. Digital Twin
(DT) technology paves the way for cost-effective and performance-optimised
management by digitally creating a virtual representation of the network to
simulate its behaviour. In order to capture the complex spatio-temporal
features in traffic scenario, we construct alignment diagrams to assist in
completing the spatio-temporal correlation representation and design dilated
alignment convolution network (DACN) to learn the fine-grained correlations,
i.e., spatio-temporal interactions. We propose a digital twin mobility
profiling (DTMP) framework to learn node profiles on a mobility network DT
model. Extensive experiments have been conducted upon three real-world
datasets. Experimental results demonstrate the effectiveness of DTMP.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - MTDT: A Multi-Task Deep Learning Digital Twin [8.600701437207725]
We introduce the Multi-Task Deep Learning Digital Twin (MTDT) as a solution for multifaceted and precise intersection traffic flow simulation.
MTDT enables accurate, fine-grained estimation of loop detector waveform time series for each lane of movement.
By consolidating the learning process across multiple tasks, MTDT demonstrates reduced overfitting, increased efficiency, and enhanced effectiveness.
arXiv Detail & Related papers (2024-05-02T00:34:10Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic
Forecasting [27.82230529014677]
The ability to forecast the state of traffic in a road network is an important functionality and a challenging task.
Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data.
We propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner.
arXiv Detail & Related papers (2022-06-18T04:14:38Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
We propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations.
We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-01-03T15:45:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.