A Novel Multi-Stage Training Approach for Human Activity Recognition
from Multimodal Wearable Sensor Data Using Deep Neural Network
- URL: http://arxiv.org/abs/2101.00702v1
- Date: Sun, 3 Jan 2021 20:48:56 GMT
- Title: A Novel Multi-Stage Training Approach for Human Activity Recognition
from Multimodal Wearable Sensor Data Using Deep Neural Network
- Authors: Tanvir Mahmud, A. Q. M. Sazzad Sayyed, Shaikh Anowarul Fattah,
Sun-Yuan Kung
- Abstract summary: Deep neural network is an effective choice to automatically recognize human actions utilizing data from various wearable sensors.
In this paper, we have proposed a novel multi-stage training approach that increases diversity in this feature extraction process.
- Score: 11.946078871080836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network is an effective choice to automatically recognize human
actions utilizing data from various wearable sensors. These networks automate
the process of feature extraction relying completely on data. However, various
noises in time series data with complex inter-modal relationships among sensors
make this process more complicated. In this paper, we have proposed a novel
multi-stage training approach that increases diversity in this feature
extraction process to make accurate recognition of actions by combining
varieties of features extracted from diverse perspectives. Initially, instead
of using single type of transformation, numerous transformations are employed
on time series data to obtain variegated representations of the features
encoded in raw data. An efficient deep CNN architecture is proposed that can be
individually trained to extract features from different transformed spaces.
Later, these CNN feature extractors are merged into an optimal architecture
finely tuned for optimizing diversified extracted features through a combined
training stage or multiple sequential training stages. This approach offers the
opportunity to explore the encoded features in raw sensor data utilizing
multifarious observation windows with immense scope for efficient selection of
features for final convergence. Extensive experimentations have been carried
out in three publicly available datasets that provide outstanding performance
consistently with average five-fold cross-validation accuracy of 99.29% on UCI
HAR database, 99.02% on USC HAR database, and 97.21% on SKODA database
outperforming other state-of-the-art approaches.
Related papers
- MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis [35.07663680944459]
Deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks.
The success of deep learning is all attributed to the training on large-scale datasets.
In order to solve the problem of large amount of data, some researchers put forward the method of data distillation.
arXiv Detail & Related papers (2024-08-05T14:16:54Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
We develop a tractable selection algorithm to efficiently identify the necessary feature combinations.
Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from simple and interpretable models to fully connected neural networks.
arXiv Detail & Related papers (2022-09-19T19:57:17Z) - UMSNet: An Universal Multi-sensor Network for Human Activity Recognition [10.952666953066542]
This paper proposes a universal multi-sensor network (UMSNet) for human activity recognition.
In particular, we propose a new lightweight sensor residual block (called LSR block), which improves the performance.
Our framework has a clear structure and can be directly applied to various types of multi-modal Time Series Classification tasks.
arXiv Detail & Related papers (2022-05-24T03:29:54Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Towards Improved Human Action Recognition Using Convolutional Neural
Networks and Multimodal Fusion of Depth and Inertial Sensor Data [1.52292571922932]
This paper attempts at improving the accuracy of Human Action Recognition (HAR) by fusion of depth and inertial sensor data.
We transform the depth data into Sequential Front view Images(SFI) and fine-tune the pre-trained AlexNet on these images.
Inertial data is converted into Signal Images (SI) and another convolutional neural network (CNN) is trained on these images.
arXiv Detail & Related papers (2020-08-22T03:41:34Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.