論文の概要: Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2101.00729v1
- Date: Sun, 3 Jan 2021 23:58:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 11:40:54.773559
- Title: Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization
- Title(参考訳): 数ショットベイズ最適化のためのメタラーニング共役事前
- Authors: Ruduan Plug
- Abstract要約: メタラーニングを用いて情報共役の事前分布の推定を自動化する新しい手法を提案する。
このプロセスから、元のデータ分布の形状パラメータを推定するために、わずかなデータしか必要としない先行データを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bayesian Optimization is methodology used in statistical modelling that
utilizes a Gaussian process prior distribution to iteratively update a
posterior distribution towards the true distribution of the data. Finding
unbiased informative priors to sample from is challenging and can greatly
influence the outcome on the posterior distribution if only few data are
available. In this paper we propose a novel approach to utilize meta-learning
to automate the estimation of informative conjugate prior distributions given a
distribution class. From this process we generate priors that require only few
data to estimate the shape parameters of the original distribution of the data.
- Abstract(参考訳): ベイズ最適化(英: bayesian optimization)は、ガウス過程の事前分布を利用してデータの真の分布に向かって後方分布を反復的に更新する統計モデリングの手法である。
サンプルからバイアスのない情報先を見つけることは困難であり、わずかなデータしか得られない場合、後部分布の結果に大きな影響を与える。
本稿では,メタラーニングを利用した情報共役事前分布の自動推定手法を提案する。
このプロセスから、元のデータ分布の形状パラメータを推定するために、わずかなデータしか必要としない事前を生成する。
関連論文リスト
- Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems [39.58317527488534]
データ駆動型人口レベルの分布は、逆問題における単純なパラメトリック先行よりも魅力的な選択肢として現れている。
これらのモデルをトレーニングするために、基礎となるデータ生成プロセスから独立した、同一に分散されたサンプルを取得することは困難である。
本研究は, 事前分布の不特定から, 更新された分布が, 人口レベルの分布に徐々に近づきつつあることを示す。
論文 参考訳(メタデータ) (2024-07-24T22:39:27Z) - Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation [5.673617376471343]
本稿では,最大エントロピー分布,すなわち可能な限り不確実性を維持することを優先する手法を提案する。
提案手法は,Sliced-Wasserstein距離を利用して,データセットとシミュレーションの差分を測定する。
提案手法の有用性を実証するために,何千もの単一ニューロン計測を用いた実験データセットから,Hodgkin-Huxleyモデルのパラメータのソース分布を推定する。
論文 参考訳(メタデータ) (2024-02-12T17:13:02Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
本稿では,OoD(Out-of-Distribution)予測のためのポータブル分布シフト変換アルゴリズムを提案する。
提案手法は,OoDアルゴリズムを広範囲に接続した場合に,一般的な性能向上をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-14T08:00:49Z) - Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets [24.551465814633325]
深層ニューラルネットワークは通常、トレーニングデータセットが極端なクラス不均衡に苦しむ場合、パフォーマンスが良くない。
近年の研究では、半教師付き方式でアウト・オブ・ディストリビューションデータによる直接トレーニングが一般化性能を損なうことが報告されている。
そこで我々は,オープンセットノイズラベルを用いて学習データセットのクラス前のバランスを再調整する,オープンサンプリングと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-17T14:29:52Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Source-free Domain Adaptation via Distributional Alignment by Matching
Batch Normalization Statistics [85.75352990739154]
ソースフリー設定のための新しいドメイン適応手法を提案する。
未観測のソースデータの分布を近似するために,事前学習モデルに格納されたバッチ正規化統計を用いた。
本手法は最先端のドメイン適応手法で競合性能を実現する。
論文 参考訳(メタデータ) (2021-01-19T14:22:33Z) - The Bayesian Method of Tensor Networks [1.7894377200944511]
ネットワークのベイズ的枠組みを2つの観点から検討する。
本研究では,2次元合成データセットにおけるモデルパラメータと決定境界を可視化することにより,ネットワークのベイズ特性について検討する。
論文 参考訳(メタデータ) (2021-01-01T14:59:15Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Domain Adaptive Bootstrap Aggregating [5.444459446244819]
ブートストラップ集約(英: bootstrap aggregating)は、予測アルゴリズムの安定性を改善する一般的な方法である。
本稿では, ドメイン適応型バッグング手法と, 隣り合う新しい反復型サンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-01-12T20:02:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。