Classification and Segmentation of Pulmonary Lesions in CT images using
a combined VGG-XGBoost method, and an integrated Fuzzy Clustering-Level Set
technique
- URL: http://arxiv.org/abs/2101.00948v1
- Date: Mon, 4 Jan 2021 13:25:13 GMT
- Title: Classification and Segmentation of Pulmonary Lesions in CT images using
a combined VGG-XGBoost method, and an integrated Fuzzy Clustering-Level Set
technique
- Authors: Niloofar Akhavan Javan, Ali Jebreili, Babak Mozafari, Morteza
Hosseinioun
- Abstract summary: Current pulmonary disease diagnosis is made by human resources, which is time-consuming and requires a specialist in this field.
Our goal is to develop a system that can detect and classify lung lesions with high accuracy and segment them in CT-scan images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Given that lung cancer is one of the deadliest diseases, and many die from
the disease every year, early detection and diagnosis of this disease are
valuable, preventing cancer from growing and spreading. So if cancer is
diagnosed in the early stage, the patient's life will be saved. However, the
current pulmonary disease diagnosis is made by human resources, which is
time-consuming and requires a specialist in this field. Also, there is a high
level of errors in human diagnosis. Our goal is to develop a system that can
detect and classify lung lesions with high accuracy and segment them in CT-scan
images. In the proposed method, first, features are extracted automatically
from the CT-scan image; then, the extracted features are classified by Ensemble
Gradient Boosting methods. Finally, if there is a lesion in the CT-scan image,
using a hybrid method based on [1], including Fuzzy Clustering and Level Set,
the lesion is segmented. We collected a dataset, including CT-scan images of
pulmonary lesions. The target community was the patients in Mashhad. The
collected samples were then tagged by a specialist. We used this dataset for
training and testing our models. Finally, we were able to achieve an accuracy
of 96% for this dataset. This system can help physicians to diagnose pulmonary
lesions and prevent possible mistakes.
Related papers
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Improving Tuberculosis (TB) Prediction using Synthetically Generated
Computed Tomography (CT) Images [0.17499351967216337]
Pulmonary infections can often be best imaged and evaluated through computed tomography (CT) scans.
X-ray, a different type of imaging procedure, is inexpensive, often available at the bedside and more widely available, but offers a simpler, two dimensional image.
We show that by relying on a model that learns to generate CT images from X-rays synthetically, we can improve the automatic disease classification accuracy.
arXiv Detail & Related papers (2021-09-23T16:35:15Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images [6.1020196190084555]
More than 100 million confirmed cases of COVID-19, including more than 2.4 million deaths.
The use of medical imaging such as chest X-ray (CXR) and chest Computed Tomography (CCT) have proved to be an excellent solution.
We propose an ensemble classifier based on probabilistic Support Vector Machine (SVM) in order to identify pneumonia patterns.
arXiv Detail & Related papers (2021-03-04T11:30:38Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Experimenting with Convolutional Neural Network Architectures for the
automatic characterization of Solitary Pulmonary Nodules' malignancy rating [0.0]
Early and automatic diagnosis of Solitary Pulmonary Nodules (SPN) in Computer Tomography (CT) chest scans can provide early treatment as well as doctor liberation from time-consuming procedures.
In this study, we consider the problem of diagnostic classification between benign and malignant lung nodules in CT images derived from a PET/CT scanner.
More specifically, we intend to develop experimental Convolutional Neural Network (CNN) architectures and conduct experiments, by tuning their parameters, to investigate their behavior, and to define the optimal setup for the accurate classification.
arXiv Detail & Related papers (2020-03-15T11:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.