論文の概要: Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty
Quantification
- arxiv url: http://arxiv.org/abs/2101.00982v2
- Date: Thu, 28 Jan 2021 14:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 20:27:45.727562
- Title: Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty
Quantification
- Title(参考訳): 不確かさウィザード:高速でユーザフレンドリーなニューラルネットワーク不確かさの定量化
- Authors: Michael Weiss and Paolo Tonella
- Abstract要約: 不確実性ウィザードは、そのような不確実性とニューラルネットワークの信頼性を定量化するツールである。
業界をリードするtf.kerasディープラーニングAPI上に構築されており、ほぼ透明で分かりやすいインターフェースを提供する。
- 参考スコア(独自算出の注目度): 4.56877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty and confidence have been shown to be useful metrics in a wide
variety of techniques proposed for deep learning testing, including test data
selection and system supervision.We present uncertainty-wizard, a tool that
allows to quantify such uncertainty and confidence in artificial neural
networks. It is built on top of the industry-leading tf.keras deep learning API
and it provides a near-transparent and easy to understand interface. At the
same time, it includes major performance optimizations that we benchmarked on
two different machines and different configurations.
- Abstract(参考訳): 不確かさと信頼性は、テストデータの選択やシステム監視など、ディープラーニングテストで提案されているさまざまなテクニックにおいて有用な指標であることが示されている。我々は、このような不確実性とニューラルネットワークの信頼性を定量化するためのツールである不確実性ウィザードを提案する。
業界をリードするtf.kerasディープラーニングAPI上に構築されており、ほぼ透明で分かりやすいインターフェースを提供する。
同時に、2つの異なるマシンと異なる構成でベンチマークした大きなパフォーマンス最適化も含まれています。
関連論文リスト
- Visual Agents as Fast and Slow Thinkers [88.6691504568041]
本稿では、Fast and Slow Thinking機構を視覚エージェントに組み込んだFaSTを紹介する。
FaSTは、システム1/2モード間の動的選択にスイッチアダプタを使用する。
モデルの信頼性を調整し、新しいコンテキストデータを統合することで、不確実で目に見えないオブジェクトに取り組む。
論文 参考訳(メタデータ) (2024-08-16T17:44:02Z) - Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment [0.0]
本稿では,Semi-Supervised Multi-Task Learning (SS-MTL) を用いた,電力系統の動的セキュリティ評価のための新しい機械学習フレームワークを開発する。
提案フレームワークの基盤となる学習アルゴリズムは条件付きマスク付きエンコーダを統合し,マルチタスク学習を用いて特徴表現を分類する。
IEEE 68-busシステムに関する様々な実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-07-11T22:42:53Z) - Bridging the Gap Between End-to-End and Two-Step Text Spotting [88.14552991115207]
ブリッジングテキストスポッティングは、2段階のメソッドでエラーの蓄積と最適化性能の問題を解決する新しいアプローチである。
提案手法の有効性を広範囲な実験により実証する。
論文 参考訳(メタデータ) (2024-04-06T13:14:04Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
本稿では,深層ニューラルネットワークにおける不確実性推定手法を再検討し,信頼性を高めるために一連の手法を統合する。
我々は,不確実性推定の有効性を示す重要なテストベッドである故障予測のベンチマークに対して,SUREを厳格に評価する。
データ破損、ラベルノイズ、長い尾のクラス分布といった現実世界の課題に適用した場合、SUREは顕著な堅牢性を示し、現在の最先端の特殊手法と同等あるいは同等な結果をもたらす。
論文 参考訳(メタデータ) (2024-03-01T13:58:19Z) - DUDES: Deep Uncertainty Distillation using Ensembles for Semantic
Segmentation [11.099838952805325]
予測の不確実性の定量化は、そのようなアプリケーションにディープニューラルネットワークを使用するための、有望な取り組みである。
本稿では,アンサンブルを用いた深部不確実性蒸留(DuDES)と呼ばれる,効率的かつ確実な不確実性評価手法を提案する。
DUDESはディープ・アンサンブル(Deep Ensemble)による学生-教師の蒸留を適用し、予測の不確かさを1つの前方パスで正確に推定する。
論文 参考訳(メタデータ) (2023-03-17T08:56:27Z) - Higher-order accurate two-sample network inference and network hashing [13.984114642035692]
ネットワーク比較のための2サンプル仮説テストは、多くの重要な課題を示す。
我々は,新しいメソッドとその変種を特徴とする包括的ツールボックスを開発した。
提案手法は,既存のツールの高速化と精度に優れ,電力効率が最適であることが証明された。
論文 参考訳(メタデータ) (2022-08-16T07:31:11Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Confidence-Aware Learning for Deep Neural Networks [4.9812879456945]
本稿では,新たな損失関数であるCorrectness Ranking Lossを用いたディープニューラルネットワークのトレーニング手法を提案する。
クラス確率を明示的に規則化し、信頼度に応じて順序付けされたランキングでより良い信頼度の推定を行う。
従来の深層分類器とほぼ同じ計算コストを持ち、1つの推論で信頼性のある予測を出力する。
論文 参考訳(メタデータ) (2020-07-03T02:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。