論文の概要: Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment
- arxiv url: http://arxiv.org/abs/2407.08886v1
- Date: Thu, 11 Jul 2024 22:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:26:19.078964
- Title: Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment
- Title(参考訳): 電力系統セキュリティ評価のための半教師付きマルチタスク学習ベースフレームワーク
- Authors: Muhy Eddin Za'ter, Amirhossein Sajadi, Bri-Mathias Hodge,
- Abstract要約: 本稿では,Semi-Supervised Multi-Task Learning (SS-MTL) を用いた,電力系統の動的セキュリティ評価のための新しい機械学習フレームワークを開発する。
提案フレームワークの基盤となる学習アルゴリズムは条件付きマスク付きエンコーダを統合し,マルチタスク学習を用いて特徴表現を分類する。
IEEE 68-busシステムに関する様々な実験を行い,提案手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a novel machine learning-based framework using Semi-Supervised Multi-Task Learning (SS-MTL) for power system dynamic security assessment that is accurate, reliable, and aware of topological changes. The learning algorithm underlying the proposed framework integrates conditional masked encoders and employs multi-task learning for classification-aware feature representation, which improves the accuracy and scalability to larger systems. Additionally, this framework incorporates a confidence measure for its predictions, enhancing its reliability and interpretability. A topological similarity index has also been incorporated to add topological awareness to the framework. Various experiments on the IEEE 68-bus system were conducted to validate the proposed method, employing two distinct database generation techniques to generate the required data to train the machine learning algorithm. The results demonstrate that our algorithm outperforms existing state-of-the-art machine learning based techniques for security assessment in terms of accuracy and robustness. Finally, our work underscores the value of employing auto-encoders for security assessment, highlighting improvements in accuracy, reliability, and robustness. All datasets and codes used have been made publicly available to ensure reproducibility and transparency.
- Abstract(参考訳): 本稿では,Semi-Supervised Multi-Task Learning (SS-MTL) を用いた新しい機械学習フレームワークを開発した。
提案フレームワークの基盤となる学習アルゴリズムは条件付きマスク付きエンコーダを統合し,マルチタスク学習を用いて特徴表現を分類し,大規模システムへの精度とスケーラビリティを向上させる。
さらに、このフレームワークは、その予測に対する信頼度測定を取り入れ、信頼性と解釈可能性を高める。
トポロジカルな類似度指数も組み込まれ、トポロジカルな認識がフレームワークに追加されている。
IEEE 68-busシステムに関する様々な実験を行い、提案手法の有効性を検証し、2つの異なるデータベース生成手法を用いて機械学習アルゴリズムの学習に必要なデータを生成する。
その結果,我々のアルゴリズムは,精度と堅牢性の観点から,既存の最先端の機械学習に基づくセキュリティ評価技術よりも優れていることがわかった。
最後に、セキュリティアセスメントに自動エンコーダを採用することの価値を強調し、正確性、信頼性、堅牢性の向上を強調します。
すべてのデータセットとコードは、再現性と透明性を保証するために公開されています。
関連論文リスト
- Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? [39.58317527488534]
本研究は,信頼性評価を改善するための古典的統計手法と機械学習手法の有効性を比較した。
従来の統計アルゴリズムは、ブラックボックスの機械学習手法よりも正確で解釈可能な結果が得られることを実証することを目的としている。
論文 参考訳(メタデータ) (2024-10-05T17:31:18Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERAは、大規模言語モデル(LLM)からの出力の透明性と信頼性を高めるために設計されたフレームワークである。
VERAが意思決定プロセスを強化し、AIアプリケーションへの信頼を高める方法を示す。
論文 参考訳(メタデータ) (2024-08-16T21:59:59Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - Assurance for Deployed Continual Learning Systems [0.0]
著者らは、ディープラーニングコンピュータビジョンアルゴリズムを用いて、連続学習を安全に実行するための新しいフレームワークを開発した。
安全フレームワークには、画像分類を実行する畳み込みニューラルネットワークのアンサンブルなど、いくつかの機能が含まれている。
結果は、システムが安全に動作していないことをフレームワークが検出できることを示している。
論文 参考訳(メタデータ) (2023-11-16T22:22:13Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - A Holistic Assessment of the Reliability of Machine Learning Systems [30.638615396429536]
本稿では,機械学習(ML)システムの信頼性に関する総合評価手法を提案する。
本フレームワークは, 分散精度, 分散シフト堅牢性, 対向ロバスト性, キャリブレーション, 分布外検出の5つの重要な特性を評価する。
異なるアルゴリズムアプローチの性能に関する洞察を提供するため、我々は最先端技術を特定し分類する。
論文 参考訳(メタデータ) (2023-07-20T05:00:13Z) - Realistic simulation of users for IT systems in cyber ranges [63.20765930558542]
ユーザアクティビティを生成するために,外部エージェントを用いて各マシンを計測する。
このエージェントは、決定論的および深層学習に基づく手法を組み合わせて、異なる環境に適応する。
また,会話や文書の作成を容易にする条件付きテキスト生成モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T10:53:29Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
安全は次世代の自律性にとって重要な問題であり、知覚と制御のためにディープニューラルネットワークに大きく依存する可能性が高い。
本研究は,安全クリティカルシステムにおける安全でないDNNを到達可能性解析で修復する枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:56:51Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。