High-bandwidth nonlinear control for soft actuators with recursive
network models
- URL: http://arxiv.org/abs/2101.01139v1
- Date: Mon, 4 Jan 2021 18:12:41 GMT
- Title: High-bandwidth nonlinear control for soft actuators with recursive
network models
- Authors: Sarah Aguasvivas Manzano, Patricia Xu, Khoi Ly, Robert Shepherd,
Nikolaus Correll
- Abstract summary: We present a high-bandwidth, lightweight, and nonlinear output tracking technique for soft actuators using Newton-Raphson.
This technique allows for reduced model sizes and increased control loop frequencies when compared with conventional RNN models.
- Score: 1.4174475093445231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a high-bandwidth, lightweight, and nonlinear output tracking
technique for soft actuators that combines parsimonious recursive layers for
forward output predictions and online optimization using Newton-Raphson. This
technique allows for reduced model sizes and increased control loop frequencies
when compared with conventional RNN models. Experimental results of this
controller prototype on a single soft actuator with soft positional sensors
indicate effective tracking of referenced spatial trajectories and rejection of
mechanical and electromagnetic disturbances. These are evidenced by root mean
squared path tracking errors (RMSE) of 1.8mm using a fully connected (FC)
substructure, 1.62mm using a gated recurrent unit (GRU) and 2.11mm using a long
short term memory (LSTM) unit, all averaged over three tasks. Among these
models, the highest flash memory requirement is 2.22kB enabling co-location of
controller and actuator.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - Hysteresis Compensation of Flexible Continuum Manipulator using RGBD Sensing and Temporal Convolutional Network [2.387821008001523]
Cable-driven manipulators face control difficulties due to from cabling effects such as friction, elongation, and coupling.
This paper proposes a data-driven approach based on Deep Neural Networks (DNN) to capture these nonlinear and previous states-dependent characteristics.
Applying this method in real surgical scenarios has the potential to enhance control precision and improve surgical performance.
arXiv Detail & Related papers (2024-02-17T16:20:59Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Toward smart composites: small-scale, untethered prediction and control
for soft sensor/actuator systems [0.6465251961564604]
We present a suite of algorithms and tools for model-predictive control of sensor/actuator systems with embedded microcontroller units (MCU)
These MCUs can be colocated with sensors and actuators, enabling a new class of smart composites capable of autonomous behavior.
Online Newton-Raphson optimization solves for the control input.
arXiv Detail & Related papers (2022-05-22T22:19:09Z) - The self-learning AI controller for adaptive power beaming with
fiber-array laser transmitter system [0.0]
We consider adaptive power beaming with fiber-array laser transmitter system in presence of atmospheric turbulence.
In this study an optimal control is synthesized by a deep neural network (DNN) using target-plane PVA sensor data as its input.
arXiv Detail & Related papers (2022-04-08T16:24:49Z) - Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution
Networks [82.18396309806577]
We propose a novel activation quantizer, referred to as Dynamic Dual Trainable Bounds (DDTB)
Our DDTB exhibits significant performance improvements in ultra-low precision.
For example, our DDTB achieves a 0.70dB PSNR increase on Urban100 benchmark when quantizing EDSR to 2-bit and scaling up output images to x4.
arXiv Detail & Related papers (2022-03-08T04:26:18Z) - An Artificial Neural Network-Based Model Predictive Control for
Three-phase Flying Capacitor Multi-Level Inverter [2.3513645401551333]
Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking.
It suffers from parametric uncertainties, since it relies on the mathematical model of the system to predict the optimal switching states.
This paper offers a model-free control strategy on the basis of artificial neural networks (ANNs)
arXiv Detail & Related papers (2021-10-15T13:54:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.