Searching for evidence of algorithmic randomness and incomputability in
the output of quantum random number generators
- URL: http://arxiv.org/abs/2101.01238v1
- Date: Mon, 4 Jan 2021 21:17:34 GMT
- Title: Searching for evidence of algorithmic randomness and incomputability in
the output of quantum random number generators
- Authors: John T. Kavulich, Brennan P. Van Deren, Maximilian Schlosshauer
- Abstract summary: Ideal quantum random number generators (QRNGs) can produce algorithmically random and thus incomputable sequences.
We present the results of a search for algorithmic randomness and incomputability in the output from two different QRNGs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ideal quantum random number generators (QRNGs) can produce algorithmically
random and thus incomputable sequences, in contrast to pseudo-random number
generators. However, the verification of the presence of algorithmic randomness
and incomputability is a nontrivial task. We present the results of a search
for algorithmic randomness and incomputability in the output from two different
QRNGs, performed by applying tests based on the Solovay-Strassen test of
primality and the Chaitin-Schwartz theorem. The first QRNG uses measurements of
quantum vacuum fluctuations. The second QRNG is based on polarization
measurements on entangled single photons; for this generator, we use looped
(and thus highly compressible) strings that also allow us to assess the ability
of the tests to detect repeated bit patterns. Compared to a previous search for
algorithmic randomness, our study increases statistical power by almost 3
orders of magnitude.
Related papers
- Non Deterministic Pseudorandom Generator for Quantum Key Distribution [0.0]
Quantum Key Distribution thrives to achieve perfect secrecy of One time Pad (OTP) through quantum processes.
One of the crucial components of QKD are Quantum Random Number Generators(QRNG) for generation of keys.
This paper proposes a pseudorandom generator based on post quantum primitives.
arXiv Detail & Related papers (2023-11-06T11:03:03Z) - Indistinguishability between quantum randomness and pseudo-randomness
under efficiently calculable randomness measures [6.201566048090889]
We present a no-go theorem for the distinguishability between quantum random numbers (i.e., random numbers generated quantum mechanically) and pseudo-random numbers (i.e., random numbers generated algorithmically)
The theorem states that one cannot distinguish these two types of random numbers if the quantum random numbers are efficiently classically simulatable and the randomness measure used for the distinction is efficiently computable.
arXiv Detail & Related papers (2023-09-20T07:50:30Z) - Quantum Random Number Generator Based on LED [0.0]
Quantum random number generators (QRNGs) produce random numbers based on the intrinsic probabilistic nature of quantum mechanics.
In this paper, we design and fabricate an embedded QRNG that produces random numbers based on fluctuations of spontaneous emission and absorption in a LED.
This device could pass NIST tests, the generation rate is 1 Mbit/s and the randomness of the output data is invariant in time.
arXiv Detail & Related papers (2023-05-25T14:31:32Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - A tunable quantum random number generator based on a fiber-optical
Sagnac interferometer [0.0]
Quantum random number generators (QRNG) are based on the naturally random measurement results performed on individual quantum systems.
We demonstrate a branching-path photonic QRNG implemented with a Sagnac interferometer with a tunable splitting ratio.
arXiv Detail & Related papers (2022-05-09T18:00:08Z) - Generation of 1 Gb full entropy random numbers with the enhanced-NRBG
method [0.13124513975412253]
Experimental demonstration of a non-deterministic random bit generator from a quantum entropy source and a deterministic random bit generator mechanism.
The extracted raw random numbers are further post-processed to generate a high-entropy seed for the hash based deterministic random bit generator.
arXiv Detail & Related papers (2021-08-09T20:06:43Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.