A tunable quantum random number generator based on a fiber-optical
Sagnac interferometer
- URL: http://arxiv.org/abs/2205.04484v1
- Date: Mon, 9 May 2022 18:00:08 GMT
- Title: A tunable quantum random number generator based on a fiber-optical
Sagnac interferometer
- Authors: Joakim Argillander, Alvaro Alarc\'on, Guilherme B. Xavier
- Abstract summary: Quantum random number generators (QRNG) are based on the naturally random measurement results performed on individual quantum systems.
We demonstrate a branching-path photonic QRNG implemented with a Sagnac interferometer with a tunable splitting ratio.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum random number generators (QRNG) are based on the naturally random
measurement results performed on individual quantum systems. Here, we
demonstrate a branching-path photonic QRNG implemented with a Sagnac
interferometer with a tunable splitting ratio. The fine-tuning of the splitting
ratio allows us to maximize the entropy of the generated sequence of random
numbers and effectively compensate for tolerances in the components. By
producing single-photons from attenuated telecom laser pulses, and employing
commercially-available components we are able to generate a sequence of more
than 2 gigabytes of random numbers with an average entropy of 7.99 bits/byte
directly from the raw measured data. Furthermore, our sequence passes
randomness tests from both the NIST and Dieharder statistical test suites, thus
certifying its randomness. Our scheme shows an alternative design of QRNGs
based on the dynamic adjustment of the uniformity of the produced random
sequence, which is relevant for the construction of modern generators that rely
on independent real-time testing of its performance.
Related papers
- Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - Quantum Random Number Generator Based on LED [0.0]
Quantum random number generators (QRNGs) produce random numbers based on the intrinsic probabilistic nature of quantum mechanics.
In this paper, we design and fabricate an embedded QRNG that produces random numbers based on fluctuations of spontaneous emission and absorption in a LED.
This device could pass NIST tests, the generation rate is 1 Mbit/s and the randomness of the output data is invariant in time.
arXiv Detail & Related papers (2023-05-25T14:31:32Z) - Generalized Time-bin Quantum Random Number Generator with
Uncharacterized Devices [0.0]
This work analyzes evolutions in the extractable amount of randomness with increasing the Hilbert space dimension.
We investigate the generic case of time-bin encoding scheme, define various input (state preparation) and outcome (measurement) subspaces.
We demonstrate that this approach can boost the system entropy, resulting in more extractable randomness.
arXiv Detail & Related papers (2023-05-05T15:53:22Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Multi-bit quantum random number generator from path-entangled single
photons [2.095553036791944]
Measurement outcomes on quantum systems exhibit inherent randomness and are fundamentally nondeterministic.
We present a scheme for the generation of multi-bit random numbers using path-entangled single photons.
arXiv Detail & Related papers (2022-02-22T14:37:17Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Searching for evidence of algorithmic randomness and incomputability in
the output of quantum random number generators [0.0]
Ideal quantum random number generators (QRNGs) can produce algorithmically random and thus incomputable sequences.
We present the results of a search for algorithmic randomness and incomputability in the output from two different QRNGs.
arXiv Detail & Related papers (2021-01-04T21:17:34Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.