論文の概要: Evaluating Empathetic Chatbots in Customer Service Settings
- arxiv url: http://arxiv.org/abs/2101.01334v1
- Date: Tue, 5 Jan 2021 03:34:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 21:12:04.281135
- Title: Evaluating Empathetic Chatbots in Customer Service Settings
- Title(参考訳): カスタマーサービスにおける共感型チャットボットの評価
- Authors: Akshay Agarwal, Shashank Maiya, Sonu Aggarwal
- Abstract要約: 顧客からの質問に応答する混合スキルチャットボットモデルは、感情を認識し、適切な共感を示すように訓練された場合、実際のエージェント応答によく似ている。
分析には、20の有名なブランドから顧客サービスコンテキストで数百万の顧客->エージェントダイアログの例を含むTwitterのカスタマーサービスデータセットを活用します。
- 参考スコア(独自算出の注目度): 6.523873187705393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Customer service is a setting that calls for empathy in live human agent
responses. Recent advances have demonstrated how open-domain chatbots can be
trained to demonstrate empathy when responding to live human utterances. We
show that a blended skills chatbot model that responds to customer queries is
more likely to resemble actual human agent response if it is trained to
recognize emotion and exhibit appropriate empathy, than a model without such
training. For our analysis, we leverage a Twitter customer service dataset
containing several million customer<->agent dialog examples in customer service
contexts from 20 well-known brands.
- Abstract(参考訳): カスタマーサービスは、生きた人間のエージェントの反応に共感を求める設定である。
近年の進歩は、オープンドメインのチャットボットが、生きた人間の発話に対する共感を示すためにどのように訓練されるかを示している。
顧客からの質問に応答する混合スキルチャットボットモデルは、そのような訓練を受けていないモデルよりも、感情を認識し、適切な共感を示すように訓練された場合、実際の人間エージェント応答によく似ている。
分析では、有名ブランド20社のカスタマーサービスコンテキストにおける数百万の顧客<->エージェントダイアログの例を含む、Twitterのカスタマーサービスデータセットを活用する。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Jewelry Shop Conversational Chatbot [0.0]
そこで我々は,顧客からの問い合わせに対して,入力とコーパスのパターンとの類似性を見出すことにより,客の問い合わせの基盤となる目的を見出すジュエリーショップのための対話エージェントを構築した。
我々のシステムはクライアント向けの音声入力インタフェースを備えており、自然言語で話すことができる。
システムの性能を評価するために、リコール、精度、F1スコアなどのパフォーマンス指標を使用しました。
論文 参考訳(メタデータ) (2022-06-09T17:56:51Z) - What is wrong with you?: Leveraging User Sentiment for Automatic Dialog
Evaluation [73.03318027164605]
本稿では,次のユーザの発話から自動的に抽出できる情報をプロキシとして利用して,前のシステム応答の質を測定することを提案する。
本モデルは,実際のユーザおよび有償ユーザから収集した音声と書面の両方のオープンドメインダイアログコーパスを一般化する。
論文 参考訳(メタデータ) (2022-03-25T22:09:52Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
人間とは異なり、チャットボットは一度に複数の顧客にサービスを提供し、24/7で提供され、1秒以内で返信できる。
深層学習を用いて感情分析,感情検出,意図分類,名義認識を行い,人文的理解と知性を備えたチャットボットを開発した。
論文 参考訳(メタデータ) (2021-12-31T22:26:41Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - Unsupervised Contextual Paraphrase Generation using Lexical Control and
Reinforcement Learning [3.2811284938530636]
自己回帰モデルを用いた文脈パラフレーズ生成のための教師なしフレームワークを提案する。
また, 意味的類似性, テクスト的含意, 表現の多様性, フラレンシに基づく自動測定法を提案し, 文脈的パラフレーズの質を評価する。
論文 参考訳(メタデータ) (2021-03-23T18:22:03Z) - A Taxonomy of Empathetic Response Intents in Human Social Conversations [1.52292571922932]
自然言語処理コミュニティでは、オープンドメインの会話エージェントがますます人気を高めている。
課題のひとつは、共感的な方法で会話できるようにすることです。
現在のニューラルレスポンス生成手法は、大規模な会話データからエンドツーエンドの学習のみに頼って対話を生成する。
近年,対話act/intentモデリングとニューラルレスポンス生成を組み合わせることが期待されている。
論文 参考訳(メタデータ) (2020-12-07T21:56:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。