Towards an efficient approach for the nonconvex $\ell_p$ ball
projection: algorithm and analysis
- URL: http://arxiv.org/abs/2101.01350v2
- Date: Mon, 22 Feb 2021 12:33:46 GMT
- Title: Towards an efficient approach for the nonconvex $\ell_p$ ball
projection: algorithm and analysis
- Authors: Xiangyu Yang, Jiashan Wang, and Hao Wang
- Abstract summary: This paper primarily focuses on computing the Euclidean projection of a vector onto the $ell_p$ ball in which $pin(0,1)$.
We develop a novel numerical approach for computing the stationary point through solving a sequence of projections onto the reweighted $ell_1$-balls.
The proposed algorithm is shown to converge uniquely under mild conditions and has a worst-case $O(1/sqrtk)$ convergence rate.
- Score: 3.4693390973571594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper primarily focuses on computing the Euclidean projection of a
vector onto the $\ell_{p}$ ball in which $p\in(0,1)$. Such a problem emerges as
the core building block in statistical machine learning and signal processing
tasks because of its ability to promote sparsity. However, efficient numerical
algorithms for finding the projections are still not available, particularly in
large-scale optimization. To meet this challenge, we first derive the
first-order necessary optimality conditions of this problem using Fr\'echet
normal cone. Based on this characterization, we develop a novel numerical
approach for computing the stationary point through solving a sequence of
projections onto the reweighted $\ell_{1}$-balls. This method is practically
simple to implement and computationally efficient. Moreover, the proposed
algorithm is shown to converge uniquely under mild conditions and has a
worst-case $O(1/\sqrt{k})$ convergence rate. Numerical experiments demonstrate
the efficiency of our proposed algorithm.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Projection-Free Online Convex Optimization via Efficient Newton
Iterations [10.492474737007722]
This paper presents new projection-free algorithms for Online Convex Optimization (OCO) over a convex domain $mathcalK subset mathbbRd$.
arXiv Detail & Related papers (2023-06-19T18:48:53Z) - A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic
Composite Optimization [10.762749887051546]
We propose two-time scale algorithms: ProxDAS-A and Proxcal$DASA-GT.
Unlike prior work, our algorithms achieve comparable complexity without requiring large batch sizes, more complex per-it operations, or stronger assumptions.
arXiv Detail & Related papers (2023-02-20T05:16:18Z) - PROMPT: Parallel Iterative Algorithm for $\ell_{p}$ norm linear
regression via Majorization Minimization with an application to
semi-supervised graph learning [0.0]
We consider the problem of $ell_p$ norm linear regression, which has several applications such as in sparse recovery, data clustering, and semi-supervised learning.
We propose an iterative algorithm : Parallel IteRative AlgOrithM for $ell_P$ norm regression via MajorizaTion Minimization (PROMPT)
arXiv Detail & Related papers (2021-10-23T10:19:11Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
arXiv Detail & Related papers (2021-06-22T07:24:17Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Efficient Projection-Free Algorithms for Saddle Point Problems [39.88460595129901]
We study projection-free algorithms for convex-strongly-concave saddle point problems with complicated constraints.
Our method combines Conditional Gradient Sliding with Mirror-Prox and shows that it only requires $tildeO (1/sqrtepsilon)$ evaluations and $tildeO (1/epsilon2)$ linear optimizations in the batch setting.
arXiv Detail & Related papers (2020-10-21T15:05:53Z) - Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm [80.15123031136564]
We propose a robust method to align point sets where there is no prior information about the value of the transformation.
Our algorithm does not need regularization on transformation, and thus can handle the situation where there is no prior information about the values of the transformations.
Experimental results demonstrate the better robustness of the proposed method over state-of-the-art algorithms.
arXiv Detail & Related papers (2020-07-05T15:23:33Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.