論文の概要: Modeling Global Semantics for Question Answering over Knowledge Bases
- arxiv url: http://arxiv.org/abs/2101.01510v1
- Date: Tue, 5 Jan 2021 13:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 11:36:36.932622
- Title: Modeling Global Semantics for Question Answering over Knowledge Bases
- Title(参考訳): 知識ベースによる質問応答のためのグローバルセマンティクスのモデル化
- Authors: Peiyun Wu and Yunjie Wu and Linjuan Wu and Xiaowang Zhang and Zhiyong
Feng
- Abstract要約: KBQAにおける意味解析のための関係グラフ畳み込みネットワーク(RGCN)モデルgRGCNを提案する。
ベンチマークで評価した結果,本モデルは市販モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 16.341353183347664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic parsing, as an important approach to question answering over
knowledge bases (KBQA), transforms a question into the complete query graph for
further generating the correct logical query. Existing semantic parsing
approaches mainly focus on relations matching with paying less attention to the
underlying internal structure of questions (e.g., the dependencies and
relations between all entities in a question) to select the query graph. In
this paper, we present a relational graph convolutional network (RGCN)-based
model gRGCN for semantic parsing in KBQA. gRGCN extracts the global semantics
of questions and their corresponding query graphs, including structure
semantics via RGCN and relational semantics (label representation of relations
between entities) via a hierarchical relation attention mechanism. Experiments
evaluated on benchmarks show that our model outperforms off-the-shelf models.
- Abstract(参考訳): 意味解析は知識ベース(KBQA)に対する質問応答の重要なアプローチとして、質問を完全なクエリグラフに変換し、正しい論理的クエリを生成する。
既存の意味解析アプローチは主に、クエリグラフを選択するための質問の内部構造(例えば、質問のすべてのエンティティ間の依存関係と関係)への注意を減らした関係性に重点を置いている。
本稿では,KBQAにおける意味解析のためのリレーショナルグラフ畳み込みネットワーク(RGCN)モデルgRGCNを提案する。
gRGCNは、RGCNとリレーショナルセマンティクス(エンティティ間の関係のラベル表現)による構造セマンティクスを含む、質問とその対応するクエリグラフのグローバルセマンティクスを階層的関係注意機構を介して抽出する。
ベンチマークで評価した結果,本モデルは市販モデルよりも優れていた。
関連論文リスト
- Relation-Aware Question Answering for Heterogeneous Knowledge Graphs [37.38138785470231]
既存の検索に基づくアプローチは、異なるホップにおける特定の関係に集中することで、この課題を解決する。
我々は,現在の関係表現を強化するために,ヘッドテールエンティティや関係間の意味的関係からの情報を利用することができないと主張している。
当社のアプローチは,従来の最先端技術よりも大きなパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2023-12-19T08:01:48Z) - Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks [0.552480439325792]
KG(Cardinality Estimation over Knowledge Graphs)は、クエリ最適化において重要である。
本稿では,知識グラフ埋め込みとグラフニューラルネットワーク(GNN)を活用して,結合クエリの濃度を正確に予測する新しい手法であるGNCEを提案する。
論文 参考訳(メタデータ) (2023-03-02T10:39:13Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - Relation-Aware Language-Graph Transformer for Question Answering [21.244992938222246]
本稿では,言語とグラフを関連づける質問応答変換器(QAT, Question Answering Transformer)を提案する。
具体的には、QATはメタパストークンを構築し、多様な構造的および意味的関係に基づいて関係中心の埋め込みを学習する。
我々は,CommonsenseQA や OpenBookQA などの常識質問応答データセットと,医療質問応答データセット MedQA-USMLE について,QAT の有効性を検証する。
論文 参考訳(メタデータ) (2022-12-02T05:10:10Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - Attention Guided Semantic Relationship Parsing for Visual Question
Answering [36.84737596725629]
人間は視覚質問回答(VQA)のような視覚言語タスクを実行するのに必要な高レベルな理解を示す意味ラベルとのオブジェクト間関係を説明する
既存のVQAモデルは、モデルがマルチモーダルタスクを解決しようとしている間、単一のドメイン内のオブジェクト間の相互作用を表現することを制約するオブジェクトレベルの視覚的特徴の組み合わせとして関係を表現します。
本稿では、画像中の主観的対象物三重項ごとに意味的特徴ベクトルを生成する汎用意味関係と、重要な関係三重項を識別する相互自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-05T00:23:49Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
論文 参考訳(メタデータ) (2020-04-06T22:35:19Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。