Weakly Supervised Object Localization and Detection: A Survey
- URL: http://arxiv.org/abs/2104.07918v1
- Date: Fri, 16 Apr 2021 06:44:50 GMT
- Title: Weakly Supervised Object Localization and Detection: A Survey
- Authors: Dingwen Zhang, Junwei Han, Gong Cheng, and Ming-Hsuan Yang
- Abstract summary: weakly supervised object localization and detection plays an important role for developing new generation computer vision systems.
We review (1) classic models, (2) approaches with feature representations from off-the-shelf deep networks, (3) approaches solely based on deep learning, and (4) publicly available datasets and standard evaluation metrics that are widely used in this field.
We discuss the key challenges in this field, development history of this field, advantages/disadvantages of the methods in each category, relationships between methods in different categories, applications of the weakly supervised object localization and detection methods, and potential future directions to further promote the development of this research field
- Score: 145.5041117184952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an emerging and challenging problem in the computer vision community,
weakly supervised object localization and detection plays an important role for
developing new generation computer vision systems and has received significant
attention in the past decade. As methods have been proposed, a comprehensive
survey of these topics is of great importance. In this work, we review (1)
classic models, (2) approaches with feature representations from off-the-shelf
deep networks, (3) approaches solely based on deep learning, and (4) publicly
available datasets and standard evaluation metrics that are widely used in this
field. We also discuss the key challenges in this field, development history of
this field, advantages/disadvantages of the methods in each category, the
relationships between methods in different categories, applications of the
weakly supervised object localization and detection methods, and potential
future directions to further promote the development of this research field.
Related papers
- Unsupervised Object Discovery: A Comprehensive Survey and Unified Taxonomy [6.346947904159397]
Unsupervised object discovery is commonly interpreted as the task of localizing and/or categorizing objects in visual data without the need for labeled examples.
This survey conducts an in-depth exploration of the existing approaches and systematically categorizes this compendium based on the tasks addressed and the families of techniques employed.
We present an overview of common datasets and metrics, highlighting the challenges of comparing methods due to varying evaluation protocols.
arXiv Detail & Related papers (2024-10-30T21:22:48Z) - Cross-view geo-localization: a survey [1.3686993145787065]
Cross-view geo-localization has garnered notable attention in the realm of computer vision, spurred by the widespread availability of copious geotagged datasets.
This paper provides a thorough survey of cutting-edge methodologies, techniques, and associated challenges that are integral to this domain.
arXiv Detail & Related papers (2024-06-14T05:14:54Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
Clustering is a fundamental machine learning task which has been widely studied in the literature.
Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community.
We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering.
arXiv Detail & Related papers (2022-06-15T15:05:13Z) - A Review of Landcover Classification with Very-High Resolution Remotely
Sensed Optical Images-Analysis Unit,Model Scalability and Transferability [4.704131850850489]
Landcover classification remains one of the most challenging tasks in very-high-resolution (VHR) image analysis.
As the rapidly increasing number of Deep Learning (DL) based landcover methods and training strategies are claimed to be the state-of-the-art, the already fragmented technical landscape of landcover mapping methods has been further complicated.
arXiv Detail & Related papers (2022-02-07T16:38:40Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z) - Unsupervised Domain Adaptation in Semantic Segmentation: a Review [22.366638308792734]
The aim of this paper is to give an overview of the recent advancements in the Unsupervised Domain Adaptation (UDA) of deep networks for semantic segmentation.
arXiv Detail & Related papers (2020-05-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.