GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks
- URL: http://arxiv.org/abs/2207.03688v1
- Date: Fri, 8 Jul 2022 04:54:53 GMT
- Title: GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks
- Authors: Venus Haghighi, Behnaz Soltani, Adnan Mahmood, Quan Z. Sheng, Jian
Yang
- Abstract summary: Anomaly detection in attributed networks has received a considerable attention in recent years due to its applications in a wide range of domains such as finance, network security, and medicine.
Traditional approaches cannot be adopted on attributed networks' settings to solve the problem of anomaly detection.
We propose a new architecture on anomaly detection using multi-task learning.
- Score: 31.565081319419225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in attributed networks has received a considerable
attention in recent years due to its applications in a wide range of domains
such as finance, network security, and medicine. Traditional approaches cannot
be adopted on attributed networks' settings to solve the problem of anomaly
detection. The main limitation of such approaches is that they inherently
ignore the relational information between data features. With a rapid explosion
in deep learning- and graph neural networks-based techniques, spotting rare
objects on attributed networks has significantly stepped forward owing to the
potentials of deep techniques in extracting complex relationships. In this
paper, we propose a new architecture on anomaly detection. The main goal of
designing such an architecture is to utilize multi-task learning which would
enhance the detection performance. Multi-task learning-based anomaly detection
is still in its infancy and only a few studies in the existing literature have
catered to the same. We incorporate both community detection and multi-view
representation learning techniques for extracting distinct and complementary
information from attributed networks and subsequently fuse the captured
information for achieving a better detection result. The mutual collaboration
between two main components employed in this architecture, i.e.,
community-specific learning and multi-view representation learning, exhibits a
promising solution to reach more effective results.
Related papers
- Intrusion Detection: A Deep Learning Approach [0.0]
The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and a Support Vector Machine (SVM) classification function.
The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
arXiv Detail & Related papers (2023-06-13T07:58:40Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.