Machine Learning and Quantum Devices
- URL: http://arxiv.org/abs/2101.01759v2
- Date: Wed, 21 Apr 2021 10:14:40 GMT
- Title: Machine Learning and Quantum Devices
- Authors: Florian Marquardt
- Abstract summary: Brief lecture notes cover the basics of neural networks and deep learning.
Lecture notes are intended for physicists without prior knowledge of neural networks and deep learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These brief lecture notes cover the basics of neural networks and deep
learning as well as their applications in the quantum domain, for physicists
without prior knowledge. In the first part, we describe training using
backpropagation, image classification, convolutional networks and autoencoders.
The second part is about advanced techniques like reinforcement learning (for
discovering control strategies), recurrent neural networks (for analyzing time
traces), and Boltzmann machines (for learning probability distributions). In
the third lecture, we discuss first recent applications to quantum physics,
with an emphasis on quantum information processing machines. Finally, the
fourth lecture is devoted to the promise of using quantum effects to accelerate
machine learning.
Related papers
- A Quick Introduction to Quantum Machine Learning for Non-Practitioners [0.0]
The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement.
It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation.
An example problem demonstrates the potential advantages of quantum neural networks.
arXiv Detail & Related papers (2024-02-22T16:48:17Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Methods for Neural Networks and Application to Medical Image
Classification [5.817995726696436]
We introduce two new quantum methods for neural networks.
The first is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit.
The second method is quantum-assisted neural networks, where a quantum computer is used to perform inner product estimation.
arXiv Detail & Related papers (2022-12-14T18:17:19Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
We review the current state of the art in distributed quantum neural networks.
We find that the distribution of quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models.
arXiv Detail & Related papers (2022-11-14T00:27:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.